本文提供许多的滤波方法,这些方法放在filters.rank子模块内。
这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定。
1、autolevel
这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级。
该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围。
格式:skimage.filters.rank.autolevel(image, selem)
selem表示结构化元素,用于设定滤波器。
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) auto =sfr.autolevel(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(auto,plt.cm.gray)
2、bottomhat 与 tophat
bottomhat: 此滤波器先计算图像的形态学闭运算,然后用原图像减去运算的结果值,有点像黑帽操作。
bottomhat: 此滤波器先计算图像的形态学开运算,然后用原图像减去运算的结果值,有点像白帽操作。
格式:
skimage.filters.rank.bottomhat(image, selem)
skimage.filters.rank.tophat(image, selem)
selem表示结构化元素,用于设定滤波器。
下面是bottomhat滤波的例子:
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) auto =sfr.bottomhat(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(auto,plt.cm.gray)
3、enhance_contrast
对比度增强。求出局部区域的最大值和最小值,然后看当前点像素值最接近最大值还是最小值,然后替换为最大值或最小值。
函数: enhance_contrast(image, selem)
selem表示结构化元素,用于设定滤波器。
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) auto =sfr.enhance_contrast(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(auto,plt.cm.gray)
4、entropy
求局部熵,熵是使用基为2的对数运算出来的。该函数将局部区域的灰度值分布进行二进制编码,返回编码的最小值。
函数格式:entropy(image, selem)
selem表示结构化元素,用于设定滤波器。
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) dst =sfr.entropy(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(dst,plt.cm.gray)
5、equalize
均衡化滤波。利用局部直方图对图像进行均衡化滤波。
函数格式:equalize(image, selem)
selem表示结构化元素,用于设定滤波器。
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) dst =sfr.equalize(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(dst,plt.cm.gray)
6、gradient
返回图像的局部梯度值(如:最大值-最小值),用此梯度值代替区域内所有像素值。
函数格式:gradient(image, selem)
selem表示结构化元素,用于设定滤波器。
from skimage import data,color import matplotlib.pyplot as plt from skimage.morphology import disk import skimage.filters.rank as sfr img =color.rgb2gray(data.lena()) dst =sfr.gradient(img, disk(5)) #半径为5的圆形滤波器 plt.figure('filters',figsize=(8,8)) plt.subplot(121) plt.title('origin image') plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title('filted image') plt.imshow(dst,plt.cm.gray)
7、其它滤波器
滤波方式很多,下面不再一一详细讲解,仅给出核心代码,所有的函数调用方式都是一样的。
最大值滤波器(maximum):返回图像局部区域的最大值,用此最大值代替该区域内所有像素值。
dst =sfr.maximum(img, disk(5))
最小值滤波器(minimum):返回图像局部区域内的最小值,用此最小值取代该区域内所有像素值。
dst =sfr.minimum(img, disk(5))
均值滤波器(mean) : 返回图像局部区域内的均值,用此均值取代该区域内所有像素值。
dst =sfr.mean(img, disk(5))
中值滤波器(median): 返回图像局部区域内的中值,用此中值取代该区域内所有像素值。
dst =sfr.median(img, disk(5))
莫代尔滤波器(modal) : 返回图像局部区域内的modal值,用此值取代该区域内所有像素值。
dst =sfr.modal(img, disk(5))
otsu阈值滤波(otsu): 返回图像局部区域内的otsu阈值,用此值取代该区域内所有像素值。
dst =sfr.otsu(img, disk(5))
阈值滤波(threshhold): 将图像局部区域中的每个像素值与均值比较,大于则赋值为1,小于赋值为0,得到一个二值图像。
dst =sfr.threshold(img, disk(5))
减均值滤波(subtract_mean): 将局部区域中的每一个像素,减去该区域中的均值。
dst =sfr.subtract_mean(img, disk(5))
求和滤波(sum) :求局部区域的像素总和,用此值取代该区域内所有像素值。
dst =sfr.sum(img, disk(5))
总结
以上就是本文关于python数字图像处理之高级滤波代码详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
Python中turtle作图示例
python通过opencv实现批量剪切图片
python好玩的项目—色情图片识别代码分享
如有不足之处,欢迎留言指出。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?