铁雪资源网 Design By www.gsvan.com
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。
系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2
一、系统、资源准备
要想达成该目标,需要满足一下几个条件:
- 找一台带有摄像头的电脑,一般笔记本即可;
- 需配有Python3,并安装NumPy包、opencv;
- 需要有已经训练好的分类器,用于识别视频中的人脸、人眼等,如无分类器,可以点击这里下载:haarcascades分类器
二、动手做
1、导入相关包、设置视频格式、调用摄像头、指定分类器
import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ") out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace") #调用摄像头 cap=cv2.VideoCapture(0) #人眼识别器分类器 classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")
2、逐帧调用图像,并实时处理
从摄像头读取一帧图像后,先转化为灰度图像,然后利用指定的分类器识别出我们需要的内容,接着对该部分内容利用高斯噪声进行覆盖,以达成马赛克的目的。
代码如下:
while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame) #释放相关资源 cap.release() out.release() cv2.destroyAllWindows()
3、观察效果
代码调用摄像头并在窗口进行了显示,可以实时观察到图像处理的效果,如图:
并将结果保存为视频,方便随时查看:
完整代码如下:
# -*- coding: utf-8 -*- import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ") out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace") #调用摄像头 cap=cv2.VideoCapture(0) #人眼识别器分类器 classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml") while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame) #释放相关资源 cap.release() out.release() cv2.destroyAllWindows()
利用opencv提供Python接口,可以很方便的进行图像、视频处理方面的学习研究,实在是很方便。这里把近期所学做个简单应用,后续再学习更深入的知识。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无Python opencv实现人眼/人脸识别以及实时打码处理的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。