铁雪资源网 Design By www.gsvan.com
我就废话不多说了,大家还是直接看代码吧~
# encoding=utf8 ''' 查看和显示nii文件 ''' import matplotlib matplotlib.use('TkAgg') from matplotlib import pylab as plt import nibabel as nib from nibabel import nifti1 from nibabel.viewers import OrthoSlicer3D example_filename = '../ADNI_nii/ADNI_002_S_0413_MR_MPR____N3__Scaled_2_Br_20081001114937668_S14782_I118675.nii' img = nib.load(example_filename) print (img) print (img.header['db_name']) #输出头信息 width,height,queue=img.dataobj.shape OrthoSlicer3D(img.dataobj).show() num = 1 for i in range(0,queue,10): img_arr = img.dataobj[:,:,i] plt.subplot(5,4,num) plt.imshow(img_arr,cmap='gray') num +=1 plt.show()
3D显示结果:
ADNI数据维度(256,256,170)分段显示:
补充知识:python nii图像扩充
我就废话不多说了,大家还是直接看代码吧~
import os import nibabel as nib import numpy as np import math src_us_folder = 'F:/src/ori' src_seg_folder = 'G:/src/seg' aug_us_folder = 'G:/aug/ori' aug_seg_folder = 'G:/aug/seg' img_n= 10 rotate_theta = np.array([0, math.pi/2]) # augmentation aug_cnt = 0 for k in range(img_n): src_us_file = os.path.join(src_us_folder, (str(k) + '.nii')) src_seg_file = os.path.join(src_seg_folder, (str(k) + '_seg.nii')) # load .nii files src_us_vol = nib.load(src_us_file) src_seg_vol = nib.load(src_seg_file) # volume data us_vol_data = src_us_vol.get_data() us_vol_data = (np.array(us_vol_data)).astype('uint8') seg_vol_data = src_seg_vol.get_data() seg_vol_data = (np.array(seg_vol_data)).astype('uint8') # get refer affine matrix ref_affine = src_us_vol.affine ############### flip volume ############### flip_us_vol = np.fliplr(us_vol_data) flip_seg_vol = np.fliplr(seg_vol_data) # construct new volumes new_us_vol = nib.Nifti1Image(flip_us_vol, ref_affine) new_seg_vol = nib.Nifti1Image(flip_seg_vol, ref_affine) # save aug_us_file = os.path.join(aug_us_folder, (str(aug_cnt) + '.nii')) aug_seg_file = os.path.join(aug_seg_folder, (str(aug_cnt) + '_seg.nii')) nib.save(new_us_vol, aug_us_file) nib.save(new_seg_vol, aug_seg_file) aug_cnt = aug_cnt + 1 ############### rotate volume ############### for t in range(len(rotate_theta)): print 'rotating %d theta of %d volume...' % (t, k) cos_gamma = np.cos(t) sin_gamma = np.sin(t) rot_affine = np.array([[1, 0, 0, 0], [0, cos_gamma, -sin_gamma, 0], [0, sin_gamma, cos_gamma, 0], [0, 0, 0, 1]]) new_affine = rot_affine.dot(ref_affine) # construct new volumes new_us_vol = nib.Nifti1Image(us_vol_data, new_affine) new_seg_vol = nib.Nifti1Image(seg_vol_data, new_affine) # save aug_us_file = os.path.join(aug_us_folder, (str(aug_cnt) + '.nii')) aug_seg_file = os.path.join(aug_seg_folder, (str(aug_cnt) + '_seg.nii')) nib.save(new_us_vol, aug_us_file) nib.save(new_seg_vol, aug_seg_file) aug_cnt = aug_cnt + 1
以上这篇python 读取.nii格式图像实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,.nii格式,图像
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无python 读取.nii格式图像实例的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。