在网上有很多文章介绍数据库优化知识,但是大部份文章只是对某个一个方面进行说明,而对于我们程序员来说这种介绍并不能很好的掌握优化知识,因为很多介绍只是对一些特定的场景优化的,所以反而有时会产生误导或让程序员感觉不明白其中的奥妙而对数据库优化感觉很神秘。
很多程序员总是问如何学习数据库优化,有没有好的教材之类的问题。在书店也看到了许多数据库优化的专业书籍,但是感觉更多是面向DBA或者是PL/SQL开发方面的知识,个人感觉不太适合普通程序员。而要想做到数据库优化的高手,不是花几周,几个月就能达到的,这并不是因为数据库优化有多高深,而是因为要做好优化一方面需要有非常好的技术功底,对操作系统、存储硬件网络、数据库原理等方面有比较扎实的基础知识,另一方面是需要花大量时间对特定的数据库进行实践测试与总结。
作为一个程序员,我们也许不清楚线上正式的服务器硬件配置,我们不可能像DBA那样专业的对数据库进行各种实践测试与总结,但我们都应该非常了解我们SQL的业务逻辑,我们清楚SQL中访问表及字段的数据情况,我们其实只关心我们的SQL是否能尽快返回结果。那程序员如何利用已知的知识进行数据库优化?如何能快速定位SQL性能问题并找到正确的优化方向?
面对这些问题,笔者总结了一些面向程序员的基本优化法则,本文将结合实例来坦述数据库开发的优化知识。
一、数据库访问优化法则简介
要正确的优化SQL,我们需要快速定位能性的瓶颈点,也就是说快速找到我们SQL主要的开销在哪里?而大多数情况性能最慢的设备会是瓶颈点,如下载时网络速度可能会是瓶颈点,本地复制文件时硬盘可能会是瓶颈点,为什么这些一般的工作我们能快速确认瓶颈点呢,因为我们对这些慢速设备的性能数据有一些基本的认识,如网络带宽是2Mbps,硬盘是每分钟7200转等等。因此,为了快速找到SQL的性能瓶颈点,我们也需要了解我们计算机系统的硬件基本性能指标,下图展示的当前主流计算机性能指标数据。
从图上可以看到基本上每种设备都有两个指标:
延时(响应时间):表示硬件的突发处理能力;
带宽(吞吐量):代表硬件持续处理能力。
从上图可以看出,计算机系统硬件性能从高到代依次为:
CPU——Cache(L1-L2-L3)——内存——SSD硬盘——网络——硬盘
由于SSD硬盘还处于快速发展阶段,所以本文的内容不涉及SSD相关应用系统。
根据数据库知识,我们可以列出每种硬件主要的工作内容:
CPU及内存:缓存数据访问、比较、排序、事务检测、SQL解析、函数或逻辑运算;
网络:结果数据传输、SQL请求、远程数据库访问(dblink);
硬盘:数据访问、数据写入、日志记录、大数据量排序、大表连接。
根据当前计算机硬件的基本性能指标及其在数据库中主要操作内容,可以整理出如下图所示的性能基本优化法则:
这个优化法则归纳为5个层次:
1、 减少数据访问(减少磁盘访问)
2、 返回更少数据(减少网络传输或磁盘访问)
3、 减少交互次数(减少网络传输)
4、 减少服务器CPU开销(减少CPU及内存开销)
5、 利用更多资源(增加资源)
由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。我们任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。
以下是每个优化法则层级对应优化效果及成本经验参考:
接下来,我们针对5种优化法则列举常用的优化手段并结合实例分析。
二、Oracle数据库两个基本概念
数据块(Block)
数据块是数据库中数据在磁盘中存储的最小单位,也是一次IO访问的最小单位,一个数据块通常可以存储多条记录,数据块大小是DBA在创建数据库或表空间时指定,可指定为2K、4K、8K、16K或32K字节。下图是一个Oracle数据库典型的物理结构,一个数据库可以包括多个数据文件,一个数据文件内又包含多个数据块;
ROWID
ROWID是每条记录在数据库中的唯一标识,通过ROWID可以直接定位记录到对应的文件号及数据块位置。ROWID内容包括文件号、对像号、数据块号、记录槽号,如下图所示:
三、数据库访问优化法则详解
1、减少数据访问
1.1、创建并使用正确的索引
数据库索引的原理非常简单,但在复杂的表中真正能正确使用索引的人很少,即使是专业的DBA也不一定能完全做到最优。
索引会大大增加表记录的DML(INSERT,UPDATE,DELETE)开销,正确的索引可以让性能提升100,1000倍以上,不合理的索引也可能会让性能下降100倍,因此在一个表中创建什么样的索引需要平衡各种业务需求。
索引常见问题:
索引有哪些种类?
常见的索引有B-TREE索引、位图索引、全文索引,位图索引一般用于数据仓库应用,全文索引由于使用较少,这里不深入介绍。B-TREE索引包括很多扩展类型,如组合索引、反向索引、函数索引等等,以下是B-TREE索引的简单介绍:
B-TREE索引也称为平衡树索引(Balance Tree),它是一种按字段排好序的树形目录结构,主要用于提升查询性能和唯一约束支持。B-TREE索引的内容包括根节点、分支节点、叶子节点。
叶子节点内容:索引字段内容+表记录ROWID
根节点,分支节点内容:当一个数据块中不能放下所有索引字段数据时,就会形成树形的根节点或分支节点,根节点与分支节点保存了索引树的顺序及各层级间的引用关系。
一个普通的BTREE索引结构示意图如下所示:
如果我们把一个表的内容认为是一本字典,那索引就相当于字典的目录,如下图所示:
图中是一个字典按部首+笔划数的目录,相当于给字典建了一个按部首+笔划的组合索引。
一个表中可以建多个索引,就如一本字典可以建多个目录一样(按拼音、笔划、部首等等)。
一个索引也可以由多个字段组成,称为组合索引,如上图就是一个按部首+笔划的组合目录。
SQL什么条件会使用索引?
当字段上建有索引时,通常以下情况会使用索引:
INDEX_COLUMN = "text-align: center">
我们一般在什么字段上建索引?
这是一个非常复杂的话题,需要对业务及数据充分分析后再能得出结果。主键及外键通常都要有索引,其它需要建索引的字段应满足以下条件:
1、字段出现在查询条件中,并且查询条件可以使用索引;
2、语句执行频率高,一天会有几千次以上;
3、通过字段条件可筛选的记录集很小,那数据筛选比例是多少才适合?
这个没有固定值,需要根据表数据量来评估,以下是经验公式,可用于快速评估:
小表(记录数小于10000行的表):筛选比例<10%;
大表:(筛选返回记录数)<(表总记录数*单条记录长度)/10000/16
单条记录长度≈字段平均内容长度之和+字段数*2
以下是一些字段是否需要建B-TREE索引的经验分类:
如何知道SQL是否使用了正确的索引?
简单SQL可以根据索引使用语法规则判断,复杂的SQL不好办,判断SQL的响应时间是一种策略,但是这会受到数据量、主机负载及缓存等因素的影响,有时数据全在缓存里,可能全表访问的时间比索引访问时间还少。要准确知道索引是否正确使用,需要到数据库中查看SQL真实的执行计划,这个话题比较复杂,详见SQL执行计划专题介绍。
索引对DML(INSERT,UPDATE,DELETE)附加的开销有多少?
这个没有固定的比例,与每个表记录的大小及索引字段大小密切相关,以下是一个普通表测试数据,仅供参考:
索引对于Insert性能降低56%
索引对于Update性能降低47%
索引对于Delete性能降低29%
因此对于写IO压力比较大的系统,表的索引需要仔细评估必要性,另外索引也会占用一定的存储空间。
1.2、只通过索引访问数据
有些时候,我们只是访问表中的几个字段,并且字段内容较少,我们可以为这几个字段单独建立一个组合索引,这样就可以直接只通过访问索引就能得到数据,一般索引占用的磁盘空间比表小很多,所以这种方式可以大大减少磁盘IO开销。
如:select id,name from company where type='2';
如果这个SQL经常使用,我们可以在type,id,name上创建组合索引
create index my_comb_index on company(type,id,name);
有了这个组合索引后,SQL就可以直接通过my_comb_index索引返回数据,不需要访问company表。
还是拿字典举例:有一个需求,需要查询一本汉语字典中所有汉字的个数,如果我们的字典没有目录索引,那我们只能从字典内容里一个一个字计数,最后返回结果。如果我们有一个拼音目录,那就可以只访问拼音目录的汉字进行计数。如果一本字典有1000页,拼音目录有20页,那我们的数据访问成本相当于全表访问的50分之一。
切记,性能优化是无止境的,当性能可以满足需求时即可,不要过度优化。在实际数据库中我们不可能把每个SQL请求的字段都建在索引里,所以这种只通过索引访问数据的方法一般只用于核心应用,也就是那种对核心表访问量最高且查询字段数据量很少的查询。
1.3、优化SQL执行计划
SQL执行计划是关系型数据库最核心的技术之一,它表示SQL执行时的数据访问算法。由于业务需求越来越复杂,表数据量也越来越大,程序员越来越懒惰,SQL也需要支持非常复杂的业务逻辑,但SQL的性能还需要提高,因此,优秀的关系型数据库除了需要支持复杂的SQL语法及更多函数外,还需要有一套优秀的算法库来提高SQL性能。
目前ORACLE有SQL执行计划的算法约300种,而且一直在增加,所以SQL执行计划是一个非常复杂的课题,一个普通DBA能掌握50种就很不错了,就算是资深DBA也不可能把每个执行计划的算法描述清楚。虽然有这么多种算法,但并不表示我们无法优化执行计划,因为我们常用的SQL执行计划算法也就十几个,如果一个程序员能把这十几个算法搞清楚,那就掌握了80%的SQL执行计划调优知识。
由于篇幅的原因,SQL执行计划需要专题介绍,在这里就不多说了。
2、返回更少的数据
2.1、数据分页处理
一般数据分页方式有:
2.1.1、客户端(应用程序或浏览器)分页
将数据从应用服务器全部下载到本地应用程序或浏览器,在应用程序或浏览器内部通过本地代码进行分页处理
优点:编码简单,减少客户端与应用服务器网络交互次数
缺点:首次交互时间长,占用客户端内存
适应场景:客户端与应用服务器网络延时较大,但要求后续操作流畅,如手机GPRS,超远程访问(跨国)等等。
2.1.2、应用服务器分页
将数据从数据库服务器全部下载到应用服务器,在应用服务器内部再进行数据筛选。以下是一个应用服务器端Java程序分页的示例:
List list=executeQuery(“select * from employee order by id”);
Int count= list.size();
List subList= list.subList(10, 20);
优点:编码简单,只需要一次SQL交互,总数据与分页数据差不多时性能较好。
缺点:总数据量较多时性能较差。
适应场景:数据库系统不支持分页处理,数据量较小并且可控。
2.1.3、数据库SQL分页
采用数据库SQL分页需要两次SQL完成
一个SQL计算总数量
一个SQL返回分页后的数据
优点:性能好
缺点:编码复杂,各种数据库语法不同,需要两次SQL交互。
oracle数据库一般采用rownum来进行分页,常用分页语法有如下两种:
直接通过rownum分页:
select * from ( select a.*,rownum rn from (select * from product a where company_id="htmlcode">create index myindex on product(company_id,status); select b.* from ( select * from ( select a.*,rownum rn from (select rowid rid,status from product a where company_id="text-align: center">
从上可以看出,Insert操作加大Batch可以对性能提高近8倍性能,一般根据主键的Update或Delete操作也可能提高2-3倍性能,但不如Insert明显,因为Update及Delete操作可能有比较大的开销在物理IO访问。以上仅是理论计算值,实际情况需要根据具体环境测量。
3.2、In List
很多时候我们需要按一些ID查询数据库记录,我们可以采用一个ID一个请求发给数据库,如下所示:
for :var in ids[] do begin
select * from mytable where id=:var;
end;
我们也可以做一个小的优化, 如下所示,用ID INLIST的这种方式写SQL:
select * from mytable where id in(:id1,id2,...,idn);
通过这样处理可以大大减少SQL请求的数量,从而提高性能。那如果有10000个ID,那是不是全部放在一条SQL里处理呢?答案肯定是否定的。首先大部份数据库都会有SQL长度和IN里个数的限制,如ORACLE的IN里就不允许超过1000个值。
另外当前数据库一般都是采用基于成本的优化规则,当IN数量达到一定值时有可能改变SQL执行计划,从索引访问变成全表访问,这将使性能急剧变化。随着SQL中IN的里面的值个数增加,SQL的执行计划会更复杂,占用的内存将会变大,这将会增加服务器CPU及内存成本。
评估在IN里面一次放多少个值还需要考虑应用服务器本地内存的开销,有并发访问时要计算本地数据使用周期内的并发上限,否则可能会导致内存溢出。
综合考虑,一般IN里面的值个数超过20个以后性能基本没什么太大变化,也特别说明不要超过100,超过后可能会引起执行计划的不稳定性及增加数据库CPU及内存成本,这个需要专业DBA评估。
3.3、设置Fetch Size
当我们采用select从数据库查询数据时,数据默认并不是一条一条返回给客户端的,也不是一次全部返回客户端的,而是根据客户端fetch_size参数处理,每次只返回fetch_size条记录,当客户端游标遍历到尾部时再从服务端取数据,直到最后全部传送完成。所以如果我们要从服务端一次取大量数据时,可以加大fetch_size,这样可以减少结果数据传输的交互次数及服务器数据准备时间,提高性能。
以下是jdbc测试的代码,采用本地数据库,表缓存在数据库CACHE中,因此没有网络连接及磁盘IO开销,客户端只遍历游标,不做任何处理,这样更能体现fetch参数的影响:
String vsql ="select * from t_employee"; PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY); pstmt.setFetchSize(1000); ResultSet rs = pstmt.executeQuery(vsql); int cnt = rs.getMetaData().getColumnCount(); Object o; while (rs.next()) { for (int i = 1; i <= cnt; i++) { o = rs.getObject(i); } }
测试示例中的employee表有100000条记录,每条记录平均长度135字节
以下是测试结果,对每种fetchsize测试5次再取平均值:
Oracle jdbc fetchsize默认值为10,由上测试可以看出fetchsize对性能影响还是比较大的,但是当fetchsize大于100时就基本上没有影响了。fetchsize并不会存在一个最优的固定值,因为整体性能与记录集大小及硬件平台有关。根据测试结果建议当一次性要取大量数据时这个值设置为100左右,不要小于40。注意,fetchsize不能设置太大,如果一次取出的数据大于JVM的内存会导致内存溢出,所以建议不要超过1000,太大了也没什么性能提高,反而可能会增加内存溢出的危险。
注:图中fetchsize在128以后会有一些小的波动,这并不是测试误差,而是由于resultset填充到具体对像时间不同的原因,由于resultset已经到本地内存里了,所以估计是由于CPU的L1,L2 Cache命中率变化造成,由于变化不大,所以笔者也未深入分析原因。
iBatis的SqlMapping配置文件可以对每个SQL语句指定fetchsize大小,如下所示:
<select id="getAllProduct" resultMap="HashMap" fetchSize="1000"> select * from employee </select>
3.4、使用存储过程
大型数据库一般都支持存储过程,合理的利用存储过程也可以提高系统性能。如你有一个业务需要将A表的数据做一些加工然后更新到B表中,但是又不可能一条SQL完成,这时你需要如下3步操作:
a:将A表数据全部取出到客户端;
b:计算出要更新的数据;
c:将计算结果更新到B表。
如果采用存储过程你可以将整个业务逻辑封装在存储过程里,然后在客户端直接调用存储过程处理,这样可以减少网络交互的成本。
当然,存储过程也并不是十全十美,存储过程有以下缺点:
a、不可移植性,每种数据库的内部编程语法都不太相同,当你的系统需要兼容多种数据库时最好不要用存储过程。
b、学习成本高,DBA一般都擅长写存储过程,但并不是每个程序员都能写好存储过程,除非你的团队有较多的开发人员熟悉写存储过程,否则后期系统维护会产生问题。
c、业务逻辑多处存在,采用存储过程后也就意味着你的系统有一些业务逻辑不是在应用程序里处理,这种架构会增加一些系统维护和调试成本。
d、存储过程和常用应用程序语言不一样,它支持的函数及语法有可能不能满足需求,有些逻辑就只能通过应用程序处理。
e、如果存储过程中有复杂运算的话,会增加一些数据库服务端的处理成本,对于集中式数据库可能会导致系统可扩展性问题。
f、为了提高性能,数据库会把存储过程代码编译成中间运行代码(类似于java的class文件),所以更像静态语言。当存储过程引用的对像(表、视图等等)结构改变后,存储过程需要重新编译才能生效,在24*7高并发应用场景,一般都是在线变更结构的,所以在变更的瞬间要同时编译存储过程,这可能会导致数据库瞬间压力上升引起故障(Oracle数据库就存在这样的问题)。
个人观点:普通业务逻辑尽量不要使用存储过程,定时性的ETL任务或报表统计函数可以根据团队资源情况采用存储过程处理。
3.5、优化业务逻辑
要通过优化业务逻辑来提高性能是比较困难的,这需要程序员对所访问的数据及业务流程非常清楚。
举一个案例:
某移动公司推出优惠套参,活动对像为VIP会员并且2010年1,2,3月平均话费20元以上的客户。
那我们的检测逻辑为:
select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003'; select vip_flag from member where phone_no='13988888888'; if avg_money>20 and vip_flag=true then begin 执行套参(); end;
如果我们修改业务逻辑为:
select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003'; if avg_money>20 then begin select vip_flag from member where phone_no='13988888888'; if vip_flag=true then begin 执行套参(); end; end;通过这样可以减少一些判断vip_flag的开销,平均话费20元以下的用户就不需要再检测是否VIP了。
如果程序员分析业务,VIP会员比例为1%,平均话费20元以上的用户比例为90%,那我们改成如下:
select vip_flag from member where phone_no='13988888888'; if vip_flag=true then begin select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003'; if avg_money>20 then begin 执行套参(); end; end;这样就只有1%的VIP会员才会做检测平均话费,最终大大减少了SQL的交互次数。
以上只是一个简单的示例,实际的业务总是比这复杂得多,所以一般只是高级程序员更容易做出优化的逻辑,但是我们需要有这样一种成本优化的意识。
3.6、使用ResultSet游标处理记录
现在大部分Java框架都是通过jdbc从数据库取出数据,然后装载到一个list里再处理,list里可能是业务Object,也可能是hashmap。
由于JVM内存一般都小于4G,所以不可能一次通过sql把大量数据装载到list里。为了完成功能,很多程序员喜欢采用分页的方法处理,如一次从数据库取1000条记录,通过多次循环搞定,保证不会引起JVM Out of memory问题。
以下是实现此功能的代码示例,t_employee表有10万条记录,设置分页大小为1000:
d1 = Calendar.getInstance().getTime(); vsql = "select count(*) cnt from t_employee"; pstmt = conn.prepareStatement(vsql); ResultSet rs = pstmt.executeQuery(); Integer cnt = 0; while (rs.next()) { cnt = rs.getInt("cnt"); } Integer lastid=0; Integer pagesize=1000; System.out.println("cnt:" + cnt); String vsql = "select count(*) cnt from t_employee"; PreparedStatement pstmt = conn.prepareStatement(vsql); ResultSet rs = pstmt.executeQuery(); Integer cnt = 0; while (rs.next()) { cnt = rs.getInt("cnt"); } Integer lastid = 0; Integer pagesize = 1000; System.out.println("cnt:" + cnt); for (int i = 0; i <= cnt / pagesize; i++) { vsql = "select * from (select * from t_employee where id>"; pstmt = conn.prepareStatement(vsql); pstmt.setFetchSize(1000); pstmt.setInt(1, lastid); pstmt.setInt(2, pagesize); rs = pstmt.executeQuery(); int col_cnt = rs.getMetaData().getColumnCount(); Object o; while (rs.next()) { for (int j = 1; j <= col_cnt; j++) { o = rs.getObject(j); } lastid = rs.getInt("id"); } rs.close(); pstmt.close(); }以上代码实际执行时间为6.516秒
很多持久层框架为了尽量让程序员使用方便,封装了jdbc通过statement执行数据返回到resultset的细节,导致程序员会想采用分页的方式处理问题。实际上如果我们采用jdbc原始的resultset游标处理记录,在resultset循环读取的过程中处理记录,这样就可以一次从数据库取出所有记录。显著提高性能。
这里需要注意的是,采用resultset游标处理记录时,应该将游标的打开方式设置为FORWARD_READONLY模式(ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY),否则会把结果缓存在JVM里,造成JVM Out of memory问题。
代码示例:
String vsql ="select * from t_employee"; PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY); pstmt.setFetchSize(100); ResultSet rs = pstmt.executeQuery(vsql); int col_cnt = rs.getMetaData().getColumnCount(); Object o; while (rs.next()) { for (int j = 1; j <= col_cnt; j++) { o = rs.getObject(j); } }
调整后的代码实际执行时间为3.156秒
从测试结果可以看出性能提高了1倍多,如果采用分页模式数据库每次还需发生磁盘IO的话那性能可以提高更多。
iBatis等持久层框架考虑到会有这种需求,所以也有相应的解决方案,在iBatis里我们不能采用queryForList的方法,而应用该采用queryWithRowHandler加回调事件的方式处理,如下所示:
MyRowHandler myrh=new MyRowHandler(); sqlmap.queryWithRowHandler("getAllEmployee", myrh); class MyRowHandler implements RowHandler { public void handleRow(Object o) { //todo something } }
iBatis的queryWithRowHandler很好的封装了resultset遍历的事件处理,效果及性能与resultset遍历一样,也不会产生JVM内存溢出。
4、减少数据库服务器CPU运算
4.1、使用绑定变量
绑定变量是指SQL中对变化的值采用变量参数的形式提交,而不是在SQL中直接拼写对应的值。
非绑定变量写法:Select * from employee where id=1234567
绑定变量写法:
Select * from employee where id="text-align: center">从以上计算可以看出,不使用绑定变量的系统当并发达到8000时会在CPU上产生瓶颈,当使用绑定变量的系统当并行达到16000时会在磁盘IO上产生瓶颈。所以如果你的系统CPU有瓶颈时请先检查是否存在大量的硬解析操作。
使用绑定变量为何会提高SQL解析性能,这个需要从数据库SQL执行原理说明,一条SQL在Oracle数据库中的执行过程如下图所示:
当一条SQL发送给数据库服务器后,系统首先会将SQL字符串进行hash运算,得到hash值后再从服务器内存里的SQL缓存区中进行检索,如果有相同的SQL字符,并且确认是同一逻辑的SQL语句,则从共享池缓存中取出SQL对应的执行计划,根据执行计划读取数据并返回结果给客户端。
如果在共享池中未发现相同的SQL则根据SQL逻辑生成一条新的执行计划并保存在SQL缓存区中,然后根据执行计划读取数据并返回结果给客户端。
为了更快的检索SQL是否在缓存区中,首先进行的是SQL字符串hash值对比,如果未找到则认为没有缓存,如果存在再进行下一步的准确对比,所以要命中SQL缓存区应保证SQL字符是完全一致,中间有大小写或空格都会认为是不同的SQL。
如果我们不采用绑定变量,采用字符串拼接的模式生成SQL,那么每条SQL都会产生执行计划,这样会导致共享池耗尽,缓存命中率也很低。
一些不使用绑定变量的场景:
a、数据仓库应用,这种应用一般并发不高,但是每个SQL执行时间很长,SQL解析的时间相比SQL执行时间比较小,绑定变量对性能提高不明显。数据仓库一般都是内部分析应用,所以也不太会发生SQL注入的安全问题。
b、数据分布不均匀的特殊逻辑,如产品表,记录有1亿,有一产品状态字段,上面建有索引,有审核中,审核通过,审核未通过3种状态,其中审核通过9500万,审核中1万,审核不通过499万。
要做这样一个查询:
select count(*) from product where status="font-size: larger">5、利用更多的资源
5.1、客户端多进程并行访问
多进程并行访问是指在客户端创建多个进程(线程),每个进程建立一个与数据库的连接,然后同时向数据库提交访问请求。当数据库主机资源有空闲时,我们可以采用客户端多进程并行访问的方法来提高性能。如果数据库主机已经很忙时,采用多进程并行访问性能不会提高,反而可能会更慢。所以使用这种方式最好与DBA或系统管理员进行沟通后再决定是否采用。
例如:
我们有10000个产品ID,现在需要根据ID取出产品的详细信息,如果单线程访问,按每个IO要5ms计算,忽略主机CPU运算及网络传输时间,我们需要50s才能完成任务。如果采用5个并行访问,每个进程访问2000个ID,那么10s就有可能完成任务。
那是不是并行数越多越好呢,开1000个并行是否只要50ms就搞定,答案肯定是否定的,当并行数超过服务器主机资源的上限时性能就不会再提高,如果再增加反而会增加主机的进程间调度成本和进程冲突机率。
以下是一些如何设置并行数的基本建议:
如果瓶颈在服务器主机,但是主机还有空闲资源,那么最大并行数取主机CPU核数和主机提供数据服务的磁盘数两个参数中的最小值,同时要保证主机有资源做其它任务。
如果瓶颈在客户端处理,但是客户端还有空闲资源,那建议不要增加SQL的并行,而是用一个进程取回数据后在客户端起多个进程处理即可,进程数根据客户端CPU核数计算。
如果瓶颈在客户端网络,那建议做数据压缩或者增加多个客户端,采用map reduce的架构处理。
如果瓶颈在服务器网络,那需要增加服务器的网络带宽或者在服务端将数据压缩后再处理了。
5.2、数据库并行处理
数据库并行处理是指客户端一条SQL的请求,数据库内部自动分解成多个进程并行处理,如下图所示:
并不是所有的SQL都可以使用并行处理,一般只有对表或索引进行全部访问时才可以使用并行。数据库表默认是不打开并行访问,所以需要指定SQL并行的提示,如下所示:
select /*+parallel(a,4)*/ * from employee;
并行的优点:
使用多进程处理,充分利用数据库主机资源(CPU,IO),提高性能。
并行的缺点:
1、单个会话占用大量资源,影响其它会话,所以只适合在主机负载低时期使用;
2、只能采用直接IO访问,不能利用缓存数据,所以执行前会触发将脏缓存数据写入磁盘操作。
注:
1、并行处理在OLTP类系统中慎用,使用不当会导致一个会话把主机资源全部占用,而正常事务得不到及时响应,所以一般只是用于数据仓库平台。
2、一般对于百万级记录以下的小表采用并行访问性能并不能提高,反而可能会让性能更差。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。