铁雪资源网 Design By www.gsvan.com

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。

自定义结构数组

通过NumPy也可以定义像C语言那样的结构类型。在NumPy中定义结构的方法如下:

定义结构类型名称;定义字段名称,标明字段数据类型。

student= dtype({'names':['name', 'age', 'weight'], 'formats':['S32', 'i','f']}, align = True) 

这里student是自定义结构类型的名称,使用dtype函数创建,在第一个参数中,'names'和'formats'不能改变,names中列出的是结构中字段名称,formats中列出的是对应字段的数据类型。S32表示32字节长度的字符串,i表示32位的整数,f表示32位长度的浮点数。最后一个参数为True时,表示要求进行内存对齐。

字段中使用NumPy的字符编码来表示数据类型。更详细的数据类型见下表。

数据类型 字符编码 整数 i 无符号整数 u 单精度浮点数 f 双精度浮点数 d 布尔值 b 复数 D 字符串 S Unicode U Void V

在定义好结构类型之后,就可以定义以该类型为元素的数组了:

a= array([(“Zhang”, 32, 65.5), (“Wang”, 24, 55.2)], dtype =student) 

除了在每个元素中依次列出对应字段的数据外,还需要在array函数中最后一个参数指定其所对应的数据类型。

注:例子来源于张若愚的Python科学计算艺术的29页。更多关于dtype的内容请参考《NumPy for Beginner》一书的第二章。

组合函数

这里介绍以不同的方式组合函数。首先创建两个数组:

> a = arange(9).reshape(3,3) 
> a 
array([[0, 1, 2], 
   [3, 4, 5], 
   [6, 7, 8]]) 
> b = 2 * a 
> b 
array([[ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]]) 

水平组合

> hstack((a, b)) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]]) 

也可通过concatenate函数并指定相应的轴来获得这一效果:

> concatenate((a, b), axis=1) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]]) 

垂直组合

> vstack((a, b)) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]]) 

同样,可通过concatenate函数,并指定相应的轴来获得这一效果。

> concatenate((a, b), axis=0) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]]) 

深度组合

另外,还有深度方面的组合函数dstack。顾名思义,就是在数组的第三个轴(即深度)上组合。如下:

> dstack((a, b)) 
array([[[ 0, 0], 
  [ 1, 2], 
  [ 2, 4]], 
 
  [[ 3, 6], 
  [ 4, 8], 
  [ 5, 10]], 
 
  [[ 6, 12], 
  [ 7, 14], 
  [ 8, 16]]]) 

仔细观察,发现对应的元素都组合成一个新的列表,该列表作为新的数组的元素。

行组合

行组合可将多个一维数组作为新数组的每一行进行组合:

> one = arange(2) 
> one 
array([0, 1]) 
> two = one + 2 
> two 
array([2, 3]) 
> row_stack((one, two)) 
array([[0, 1], 
  [2, 3]]) 

对于2维数组,其作用就像垂直组合一样。

列组合

列组合的效果应该很清楚了。如下:

> column_stack((oned, twiceoned)) 
array([[0, 2], 
  [1, 3]]) 

对于2维数组,其作用就像水平组合一样。

分割数组

在NumPy中,分割数组的函数有hsplit、vsplit、dsplit和split。可将数组分割成相同大小的子数组,或指定原数组分割的位置。

水平分割

> a = arange(9).reshape(3,3) 
> a 
array([[0, 1, 2], 
  [3, 4, 5], 
  [6, 7, 8]]) 
> hsplit(a, 3) 
[array([[0], 
  [3], 
  [6]]), 
 array([[1], 
  [4], 
  [7]]), 
 array([[2], 
  [5], 
  [8]])] 

也调用split函数并指定轴为1来获得这样的效果:

split(a, 3, axis=1) 

垂直分割

垂直分割是沿着垂直的轴切分数组:

> vsplit(a, 3) 
> [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])] 

同样,也可通过solit函数并指定轴为1来获得这样的效果:

> split(a, 3, axis=0) 

面向深度的分割

dsplit函数使用的是面向深度的分割方式:

> c = arange(27).reshape(3, 3, 3) 
> c 
array([[[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8]], 
 
  [[ 9, 10, 11], 
  [12, 13, 14], 
  [15, 16, 17]], 
 
  [[18, 19, 20], 
  [21, 22, 23], 
  [24, 25, 26]]]) 
> dsplit(c, 3) 
[array([[[ 0], 
  [ 3], 
  [ 6]], 
 
  [[ 9], 
  [12], 
  [15]], 
 
  [[18], 
  [21], 
  [24]]]), 
 array([[[ 1], 
  [ 4], 
  [ 7]], 
 
  [[10], 
  [13], 
  [16]], 
 
  [[19], 
  [22], 
  [25]]]), 
 array([[[ 2], 
  [ 5], 
  [ 8]], 
 
  [[11], 
  [14], 
  [17]], 
 
  [[20], 
  [23], 
  [26]]])] 

复制和镜像(View)

当运算和处理数组时,它们的数据有时被拷贝到新的数组有时不是。这通常是新手的困惑之源。这有三种情况:

完全不复制

简单的赋值,而不复制数组对象或它们的数据。

> a = arange(12) 
> b = a  #不创建新对象 
> b is a   # a和b是同一个数组对象的两个名字 
True 
> b.shape = 3,4 #也改变了a的形状 
> a.shape 
(3, 4) 
    Python 传递不定对象作为参考4,所以函数调用不拷贝数组。
 > def f(x): 
...  print id(x) 
... 
> id(a)  #id是一个对象的唯一标识 
148293216 
> f(a) 
148293216 

视图(view)和浅复制

不同的数组对象分享同一个数据。视图方法创造一个新的数组对象指向同一数据。

> c = a.view() 
> c is a 
False 
> c.base is a  #c是a持有数据的镜像 
True 
> c.flags.owndata 
False 
> 
> c.shape = 2,6 # a的形状没变 
> a.shape 
(3, 4) 
> c[0,4] = 1234  #a的数据改变了 
> a 
array([[ 0, 1, 2, 3], 
  [1234, 5, 6, 7], 
  [ 8, 9, 10, 11]]) 

切片数组返回它的一个视图:

> s = a[ : , 1:3]  # 获得每一行1,2处的元素 
> s[:] = 10   # s[:] 是s的镜像。注意区别s=10 and s[:]=10 
> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]]) 

深复制

这个复制方法完全复制数组和它的数据。

 > d = a.copy()  #创建了一个含有新数据的新数组对象 
> d is a 
False 
> d.base is a  #d和a现在没有任何关系 
False 
> d[0,0] = 9999 
> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]]) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
numpy,数组组合,numpy,数组复制,python,numpy,数组

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“深入理解NumPy简明教程---数组3(组合)”

暂无深入理解NumPy简明教程---数组3(组合)的评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。