铁雪资源网 Design By www.gsvan.com

根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据。经过多番尝试总算试出来了一种方法。

之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着。原来的数据如下:

GreydeMac-mini:chapter06 greyzhang$ cat data.csv

1,name_01,coment_01,,,,
2,name_02,coment_02,,,,
3,name_03,coment_03,,,,
4,name_04,coment_04,,,,
5,name_05,coment_05,,,,
6,name_06,coment_06,,,,
7,name_07,coment_07,,,,
8,name_08,coment_08,,,,
9,name_09,coment_09,,,,
10,name_10,coment_10,,,,
11,name_11,coment_11,,,,
12,name_12,coment_12,,,,
13,name_13,coment_13,,,,
14,name_14,coment_14,,,,
15,name_15,coment_15,,,,
16,name_16,coment_16,,,,
17,name_17,coment_17,,,,
18,name_18,coment_18,,,,
19,name_19,coment_19,,,,
20,name_20,coment_20,,,,
21,name_21,coment_21,,,,

如果使用pandas读取出全部的数据,打印的时候会出现以下结果:

In [41]: data = pd.read_csv('data.csv')

In [42]: data
Out[42]: 
  1 name_01 coment_01 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6
0 2 name_02 coment_02   NaN   NaN   NaN   NaN
1 3 name_03 coment_03   NaN   NaN   NaN   NaN
2 4 name_04 coment_04   NaN   NaN   NaN   NaN
3 5 name_05 coment_05   NaN   NaN   NaN   NaN
4 6 name_06 coment_06   NaN   NaN   NaN   NaN
5 7 name_07 coment_07   NaN   NaN   NaN   NaN
6 8 name_08 coment_08   NaN   NaN   NaN   NaN
7 9 name_09 coment_09   NaN   NaN   NaN   NaN
8 10 name_10 coment_10   NaN   NaN   NaN   NaN
9 11 name_11 coment_11   NaN   NaN   NaN   NaN
10 12 name_12 coment_12   NaN   NaN   NaN   NaN
11 13 name_13 coment_13   NaN   NaN   NaN   NaN
12 14 name_14 coment_14   NaN   NaN   NaN   NaN
13 15 name_15 coment_15   NaN   NaN   NaN   NaN
14 16 name_16 coment_16   NaN   NaN   NaN   NaN
15 17 name_17 coment_17   NaN   NaN   NaN   NaN
16 18 name_18 coment_18   NaN   NaN   NaN   NaN
17 19 name_19 coment_19   NaN   NaN   NaN   NaN
18 20 name_20 coment_20   NaN   NaN   NaN   NaN
19 21 name_21 coment_21   NaN   NaN   NaN   NaN

所说在学习的过程中这并不会给我带来什么障碍,但是在命令行终端界面呆久了总喜欢稍微清爽一点的风格。使用read_csv的参数usecols能够在一定程度上减少这种混乱感。

In [45]: data = pd.read_csv('data.csv',usecols=[0,1,2,3])

In [46]: data
Out[46]: 
  1 name_01 coment_01 Unnamed: 3
0 2 name_02 coment_02   NaN
1 3 name_03 coment_03   NaN
2 4 name_04 coment_04   NaN
3 5 name_05 coment_05   NaN
4 6 name_06 coment_06   NaN
5 7 name_07 coment_07   NaN
6 8 name_08 coment_08   NaN
7 9 name_09 coment_09   NaN
8 10 name_10 coment_10   NaN
9 11 name_11 coment_11   NaN
10 12 name_12 coment_12   NaN
11 13 name_13 coment_13   NaN
12 14 name_14 coment_14   NaN
13 15 name_15 coment_15   NaN
14 16 name_16 coment_16   NaN
15 17 name_17 coment_17   NaN
16 18 name_18 coment_18   NaN
17 19 name_19 coment_19   NaN
18 20 name_20 coment_20   NaN
19 21 name_21 coment_21   NaN

为了能够看到数据的“边界”,读取的时候显示了第一列无效的数据。正常的使用中,或许我们是想连上面结果中最后一列的信息也去掉的,那只需要在参数重去掉最后一列的列号。

In [47]: data = pd.read_csv('data.csv',usecols=[0,1,2])

In [48]: data
Out[48]: 
  1 name_01 coment_01
0 2 name_02 coment_02
1 3 name_03 coment_03
2 4 name_04 coment_04
3 5 name_05 coment_05
4 6 name_06 coment_06
5 7 name_07 coment_07
6 8 name_08 coment_08
7 9 name_09 coment_09
8 10 name_10 coment_10
9 11 name_11 coment_11
10 12 name_12 coment_12
11 13 name_13 coment_13
12 14 name_14 coment_14
13 15 name_15 coment_15
14 16 name_16 coment_16
15 17 name_17 coment_17
16 18 name_18 coment_18
17 19 name_19 coment_19
18 20 name_20 coment_20
19 21 name_21 coment_21

以上这篇使用pandas读取csv文件的指定列方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pandas读取csv指定列

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“使用pandas读取csv文件的指定列方法”

暂无使用pandas读取csv文件的指定列方法的评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?