首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的,
所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别
首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头,
因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的,
我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件,
这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分
一、检测环境
再来在开始前因为之前按着国嵌的指导手册安装的opencv3.2当时没有开启V4L2及GTK_2.x的支持,
所以後面遇到了一连串的问题,请大家如下面方法检测
$ python
1.检测Python的V4L2支持及摄像头驱动是否正常
进入Python之後如下命令
Python 2.7.12 (default, Nov 19 2016, 06:48:10) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. > import cv2 > cap = cv2.VideoCapture(0) > print cap.isOpened() True >
如果 返回True就代表摄像头及你的opencv的V4L2支持就已经完全正常了
如果返回False就代表opencv或是摄像头有问题叁考後面的修改方式
2.再来因为我们要把摄像头的影像生成窗口,所以我们需要检测Python的gtk支持如下
> import cv2 > cv2.namedWindow('test',cv2.WINDOW_AUTOSIZE) >
如果没有报任何错误就代表gtk也是正常的
如如果出现下面提示
OpenCV Error: Unspecified error (The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script) in cvNamedWindow,
那就代表opencv不支持gtk
如果上面两个测试都是好使的你可以跳过本步骤
首先我发现我不论如何重新编译opencv发现python一直都是有问题的,
最後发现是因为不知道什麽时候已经装过 python-opencv的包了
可以用命令
$ pip list |grep opencv
如果发现有任何跟opencv有关的包都可以利用 pip uninstall xxx 来移除
假设看到 pythom-opencv的包那就 pip uninstall opencv-python 来移除
还有检查dpkg -i |grep opencv 如果跟python的opencv有关的包也得移除
$ sudo apt-get remove python-opencv
然後到你之前安装opencv3.2的那个源码目录,
$ cd build $ make uninstall
这样就会卸载之前安装的opencv
再来V4L的头文件已经改名了,但是opencv会默认使用linux/videodev.h所以要做个软鍊接
$ ln -s /usr/include/libv4l1-videodev.h /usr/include/linux/videodev.h
opencv安装过程中会自动的检测相关的包,以及一些依赖,
先列出我安装的包,但是因为环境多少有点不同,下面会教大家如何看缺少的包
$ sudo apt-get install libgphoto2-dev v4l2ucp libv4l-dev dv4l libwebcam0-dev libgtkglext1-dev libunicap2-dev
再来执行cmake
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D WITH_V4L=ON -D WITH_GTK=ON -D WITH_GTK_2_X -D WITH_OPENGL=ON -D WITH_CUDA=ON -D WITH_CUBLAS=ON -D BUILD_PYTHON_SUPPORT=ON -D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-3.2.0/modules/ ../opencv-3.2.0
其中如果V4L2使用share库也可以把-D WITH_V4L: = ON 换成
-D WITH_LIBV4L=ON
在cmake的过程中会有类似如下的提示
Detected version of GNU GCC: 54 (504) FP16: Feature disabled Found OpenEXR: /usr/lib/x86_64-linux-gnu/libIlmImf.so Checking for module 'libucil' No package 'libucil' found Looking for linux/videodev.h Looking for linux/videodev.h - found Looking for linux/videodev2.h Looking for linux/videodev2.h - found Looking for sys/videoio.h Looking for sys/videoio.h - not found Checking for module 'libavresample' No package 'libavresample' found Found TBB: build found IPP (ICV version): 9.0.1 [9.0.1] at: /mnt/sdb/ubuntu/install/opencv/build/3rdparty/ippicv/ippicv_lnx CUDA detected: 8.0 CUDA NVCC target flags: -gencode;arch=compute_20,code=sm_20;-gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-D_FORCE_INLINES LAPACK_IMPL: Atlas, LAPACK_LIBRARIES: /usr/lib/liblapack.so;/usr/lib/libcblas.so;/usr/lib/libatlas.so Could NOT find JNI (missing: JAVA_AWT_LIBRARY JAVA_JVM_LIBRARY JAVA_INCLUDE_PATH JAVA_INCLUDE_PATH2 JAVA_AWT_INCLUDE_PATH) Could NOT find Matlab (missing: MATLAB_MEX_SCRIPT MATLAB_INCLUDE_DIRS MATLAB_ROOT_DIR MATLAB_LIBRARIES MATLAB_LIBRARY_DIRS MATLAB_MEXEXT MATLAB_ARCH MATLAB_BIN) VTK is not found. Please set -DVTK_DIR in CMake to VTK build directory, or to VTK install subdirectory with VTKConfig.cmake file General configuration for OpenCV 3.2.0 ===================================== Version control: unknown Platform: Timestamp: 2017-08-14T00:31:55Z Host: Linux 4.10.0-30-generic x86_64 CMake: 3.5.1 CMake generator: Unix Makefiles CMake build tool: /usr/bin/make Configuration: Release C/C++: Built as dynamic libs"htmlcode">Checking for module 'libucil' No package 'libucil' found这个我还真没找到怎么解决,不过反正问题不大
再来下面的部份一定要注意几个部分一定要有
GUI: GTK+ 2.x: YES (ver 2.24.30)Video I/O: V4L/V4L2: YES/YES FFMPEG: YES Python 2: Interpreter: /usr/bin/python2.7 (ver 2.7.12) Libraries: /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.12) numpy: /usr/local/lib/python2.7/dist-packages/numpy/core/include (ver 1.13.1) packages path: lib/python2.7/dist-packages主要就是上面几个个非常重要,必須要装上
再来就正常 make
$ make -j8 $ make install设置nccl的ld环境
$ vi /etc/ld.so.conf.d/nccl.conf加上下面目录
/usr/local/nccl/lib/然后执行
$ sudo ldconfig安装完后回python按步骤一再次检查是否环境都好使了
二、撰写Python测试程序
# -*- coding:utf-8 -*- # 用于模型的单张图像分类操作 import os os.environ['GLOG_minloglevel'] = '2' # 将caffe的输出log信息不显示,必须放到import caffe前 import caffe # caffe 模块 from caffe.proto import caffe_pb2 from google.protobuf import text_format import numpy as np import cv2 import matplotlib.pyplot as plt import time import skimage.io global num num = 0 def detect(image1,net): # 传进来的image1的dtype为uint8 # print image1.shape # print image1.dtype # print image1.size # image = np.array(image1, dtype=np.float32) # image = caffe.io.resize_image(image1, (480, 640)) image = skimage.img_as_float(image1).astype(np.float32) # image = caffe.io.resize_image(image2, (300, 300)) # skimage.io.imsave("photo.png", image) # cv2.imwrite("photo.png", image) # image = caffe.io.load_image(caffe_root + 'examples/images/bird.jpg') # 以下方式读取的imaged的dtype为float32 # image = caffe.io.load_image(caffe_root + 'photo.png') # image = caffe.io.load_image(image1) # 改变dtype # image.dtype = 'float32' # print 'mode:'+image.mode # print image.shape # print image.dtype # print image.size # plt.imshow(image) # * Run the net and examine the top_k results # In[5]: global num num += 1 print 'image num:' + str(num) transformed_image = transformer.preprocess('data', image) net.blobs['data'].data[...] = transformed_image time_start=time.time() # Forward pass. net.forward() time_end=time.time() print 'time:' + str(time_end-time_start) + ' s' loc = net.blobs['bbox-list'].data[0] print(loc) #查看了结构文件发现在CAFFE一开始图像输入的时候就已经将图片缩小了,宽度1248高度384 #然后我们在net.blobs['bbox-list'].data得到的是侦测到的目标座标,但是是相对于1248*384的 #所以我们要把座标转换回相对原大小的位置,下面im.shape是保存在原尺寸的宽高, for l in range(len(loc)): xmin = int(loc[l][0] * image.shape[1] / 1248) ymin = int(loc[l][1] * image.shape[0] / 384) xmax = int(loc[l][2] * image.shape[1] /1248) ymax = int(loc[l][3] * image.shape[0] / 384) #在该座标位置画一个方框 cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (55 / 255.0, 255 / 255.0, 155 / 255.0), 2) # 显示结果 #plt.imshow(image, 'brg') #plt.show() cv2.imshow('img', image) def show_info(cam): print 'POS_FRAMES:'+str(cam.get(1)) print 'FRAME_COUNT:'+str(cam.get(7)) print 'FORMAT:'+str(cam.get(8)) print 'MODE:'+str(cam.get(9)) print 'SATURATION:'+str(cam.get(12)) print 'FPS:'+str(cam.get(5)) #CPU或GPU模型转换 caffe.set_mode_gpu() #caffe.set_mode_cpu() #caffe.set_device(0) caffe_root = '/var/smb/work/mycode/' # 网络参数(权重)文件 caffemodel = caffe_root + 'module/detectnet/snapshot_iter_2391.caffemodel' # 网络实施结构配置文件 deploy = caffe_root + 'module/detectnet/deploy.prototxt' img_root = caffe_root + 'data/' # 网络实施分类 net = caffe.Net(deploy, # 定义模型结构 caffemodel, # 包含了模型的训练权值 caffe.TEST) # 使用测试模式(不执行dropout) # 加载ImageNet图像均值 (随着Caffe一起发布的) print(os.environ['PYTHONPATH']) #mu = np.load(os.environ['PYTHONPATH'] + '/caffe/imagenet/ilsvrc_2012_mean.npy') #mu = mu.mean(1).mean(1) # 对所有像素值取平均以此获取BGR的均值像素值 # 图像预处理 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) #transformer.set_mean('data', mu) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0)) # 处理图像 cam = cv2.VideoCapture(0) if cam.isOpened(): cam.set(3, 400) cam.set(4, 300) cam.set(5, 3) time.sleep(6) cam.set(15, -8.0) size = (int(cam.get(3)), int(cam.get(4))) print 'size:' print size cv2.namedWindow('img', cv2.WINDOW_NORMAL) # cnt=2 # while cnt: # cnt -= 1 while cam.isOpened(): ret, img = cam.read() if ret: #show_info(cam) detect(img,net) if 0xFF == ord('q') & cv2.waitKey(5) == 27: break # time.sleep(0.033) cam.release() cv2.destroyAllWindows()介面上会打印bbox也就是侦测到的目标在图像的座标,另外请自行修改python代码里的相关目录,
我用自己训练的KITTI数据集,用于侦测车辆,因为拍不到车子拿手机欺骗一下,好使
以上这篇python+opencv+caffe+摄像头做目标检测的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。