铁雪资源网 Design By www.gsvan.com

最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般。利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的)。看来opencv对于摄像头的兼容性仍然不是很完善。

我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开。最后采用pygame实现了摄像头的采集功能,这里直接给大家分享具体实现代码(python3.6,cv2,opencv3.3,ubuntu16.04)。中间注释的部分是我上述方法打开摄像头的尝试,说不定有适合自己的。

import pygame.camera
import time
import pygame
import cv2
import numpy as np
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return image_np, frame
 
 
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(0.1)
screen = pygame.display.set_mode([640, 480])
 
while True:
 image = cam.get_image()
 
 cv_image, frame = pygame_to_cvimage(image)
 
 screen.fill([0, 0, 0])
 screen.blit(image, (0, 0))
 pygame.display.update()
 cv2.imshow('frame', frame)
 key = cv2.waitKey(1)
 if key & 0xFF == ord('q'):
  break
 
 
 #pygame.image.save(image, "pygame1.jpg")
 
cam.stop()
 
 
 

上述代码需要注意一个地方,就是pygame图片和opencv图片的转化(pygame_to_cvimage)有些地方采用cv.CreateImageHeader和SetData来实现,注意这两个函数在opencv3+后就消失了。因此采用numpy进行实现。

至于目标检测,由于现在网上有很多实现的方法,MobileNet等等。这里我不讲解具体原理,因为我的研究方向不是这个,这里直接把代码贴出来,亲测成功了。

from imutils.video import FPS
import argparse
import imutils
 
 
import v4l2
import fcntl
 
import v4l2capture
import select
import image
 
import pygame.camera
import pygame
import cv2
import numpy as np
import time
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return frame
 
 
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to caffe deploy prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to caffe pretrained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detection")
args = vars(ap.parse_args())
 
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
   "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
 
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
 
 
print("[INFO] starting video stream ...")
 
###### opencv ########
#vs = VideoStream(src=1).start()
#
#camera = cv2.VideoCapture(0)
#if not camera.isOpened():
# print("camera is not open")
#time.sleep(2.0)
 
 
###### v4l2 ########
 
#vd = open('/dev/video0', 'r')
#cp = v4l2.v4l2_capability()
#fcntl.ioctl(vd, v4l2.VIDIOC_QUERYCAP, cp)
 
#cp.driver
 
 
##### v4l2_capture
#video = v4l2capture.Video_device("/dev/video0")
#size_x, size_y = video.set_format(640, 480, fourcc= 'MJPEG')
#video.create_buffers(30)
 
#video.queue_all_buffers()
 
#video.start()
 
##### pygame ####
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(1)
 
fps = FPS().start()
 
 
while True:
 #try:
 # frame = vs.read()
 #except:
 # print("camera is not opened")
 
 #frame = imutils.resize(frame, width=400)
 #(h, w) = frame.shape[:2]
 
 
 #grabbed, frame = camera.read()
 #if not grabbed:
 # break
 #select.select((video,), (), ())
 #frame = video.read_and_queue()
 
 #npfs = np.frombuffer(frame, dtype=np.uint8)
 #print(len(npfs))
 #frame = cv2.imdecode(npfs, cv2.IMREAD_COLOR)
 
 image = cam.get_image()
 frame = pygame_to_cvimage(image)
 
 frame = imutils.resize(frame, width=640)
 blob = cv2.dnn.blobFromImage(frame, 0.00783, (640, 480), 127.5)
 
 net.setInput(blob)
 detections = net.forward()
 
 for i in np.arange(0, detections.shape[2]):
 
  confidence = detections[0, 0, i, 2]
 
  if confidence > args["confidence"]:
 
   idx = int(detections[0, 0, i, 1])
   box = detections[0, 0, i, 3:7]*np.array([640, 480, 640, 480])
   (startX, startY, endX, endY) = box.astype("int")
 
   label = "{}:{:.2f}%".format(CLASSES[idx], confidence*100)
   cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
   y = startY - 15 if startY - 15 > 15 else startY + 15
 
   cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1)& 0xFF
 
 if key ==ord("q"):
  break
 
 
fps.stop()
print("[INFO] elapsed time :{:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS :{:.2f}".format(fps.fps()))
 
 
 
cv2.destroyAllWindows()
 
#vs.stop()
 

上面的实现需要用到两个文件,是caffe实现好的模型,我直接上传(文件名为MobileNetSSD_deploy.caffemodel和MobileNetSSD_deploy.prototxt,上google能够下载到)。

以上这篇python开启摄像头以及深度学习实现目标检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,摄像头,目标检测

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“python开启摄像头以及深度学习实现目标检测方法”

暂无python开启摄像头以及深度学习实现目标检测方法的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。