铁雪资源网 Design By www.gsvan.com

本文实例讲述了Python统计分析模块statistics用法。分享给大家供大家参考,具体如下:

一 计算平均数函数mean()

>import statistics
> statistics.mean([1,2,3,4,5,6,7,8,9])#使用整数列表做参数
5
> statistics.mean(range(1,10))#使用range对象做参数
5
>import fractions
> x =[(3,7),(1,21),(5,3),(1,3)]
> y =[fractions.Fraction(*item)for item in x]
> y
[Fraction(3,7),Fraction(1,21),Fraction(5,3),Fraction(1,3)]
> statistics.mean(y)#使用包含分数的列表做参数
Fraction(13,21)
>import decimal
> x =('0.5','0.75','0.625','0.375')
> y = map(decimal.Decimal, x)
> statistics.mean(y)
Decimal('0.5625')

二 中位数函数median()、median_low()、median_high()、median_grouped()

> statistics.median([1,3,5,7])#偶数个样本时取中间两个数的平均数
4.0
> statistics.median_low([1,3,5,7])#偶数个样本时取中间两个数的较小者
3
> statistics.median_high([1,3,5,7])#偶数个样本时取中间两个数的较大者
5
> statistics.median(range(1,10))
5
> statistics.median_low([5,3,7]), statistics.median_high([5,3,7])
(5,5)
> statistics.median_grouped([5,3,7])
5.0
> statistics.median_grouped([52,52,53,54])
52.5
> statistics.median_grouped([1,3,3,5,7])
3.25
> statistics.median_grouped([1,2,2,3,4,4,4,4,4,5])
3.7
> statistics.median_grouped([1,2,2,3,4,4,4,4,4,5], interval=2)
3.4

三 返回最常见数据或出现次数最多的数据(most common data)的函数mode()

> statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素
Traceback(most recent call last):
File"<pyshell#27>", line 1,in<module>
statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素
File"D:\Python36\lib\statistics.py", line 507,in mode
'no unique mode; found %d equally common values'% len(table)
statistics.StatisticsError: no unique mode; found 4 equally common values
> statistics.mode([1,3,5,7,3])
3
> statistics.mode(["red","blue","blue","red","green","red","red"])
'red'

四  pstdev(),返回总体标准差(population standard deviation ,the square root of the population variance)

> statistics.pstdev([1.5,2.5,2.5,2.75,3.25,4.75])
0.986893273527251
> statistics.pstdev(range(20))
5.766281297335398

五 pvariance(),返回总体方差(population variance)或二次矩(second moment)

> statistics.pvariance([1.5,2.5,2.5,2.75,3.25,4.75])
0.9739583333333334
> x =[1,2,3,4,5,10,9,8,7,6]
> mu = statistics.mean(x)
> mu
5.5
> statistics.pvariance([1,2,3,4,5,10,9,8,7,6], mu)
8.25
> statistics.pvariance(range(20))
33.25
> statistics.pvariance((random.randint(1,10000)for i in range(30)))
>import random
> statistics.pvariance((random.randint(1,10000)for i in range(30)))
7117280.4

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,统计分析模块,statistics

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“Python统计分析模块statistics用法示例”

暂无Python统计分析模块statistics用法示例的评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。