铁雪资源网 Design By www.gsvan.com
本文实例讲述了Python统计分析模块statistics用法。分享给大家供大家参考,具体如下:
一 计算平均数函数mean()
>import statistics > statistics.mean([1,2,3,4,5,6,7,8,9])#使用整数列表做参数 5 > statistics.mean(range(1,10))#使用range对象做参数 5 >import fractions > x =[(3,7),(1,21),(5,3),(1,3)] > y =[fractions.Fraction(*item)for item in x] > y [Fraction(3,7),Fraction(1,21),Fraction(5,3),Fraction(1,3)] > statistics.mean(y)#使用包含分数的列表做参数 Fraction(13,21) >import decimal > x =('0.5','0.75','0.625','0.375') > y = map(decimal.Decimal, x) > statistics.mean(y) Decimal('0.5625')
二 中位数函数median()、median_low()、median_high()、median_grouped()
> statistics.median([1,3,5,7])#偶数个样本时取中间两个数的平均数 4.0 > statistics.median_low([1,3,5,7])#偶数个样本时取中间两个数的较小者 3 > statistics.median_high([1,3,5,7])#偶数个样本时取中间两个数的较大者 5 > statistics.median(range(1,10)) 5 > statistics.median_low([5,3,7]), statistics.median_high([5,3,7]) (5,5) > statistics.median_grouped([5,3,7]) 5.0 > statistics.median_grouped([52,52,53,54]) 52.5 > statistics.median_grouped([1,3,3,5,7]) 3.25 > statistics.median_grouped([1,2,2,3,4,4,4,4,4,5]) 3.7 > statistics.median_grouped([1,2,2,3,4,4,4,4,4,5], interval=2) 3.4
三 返回最常见数据或出现次数最多的数据(most common data)的函数mode()
> statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素 Traceback(most recent call last): File"<pyshell#27>", line 1,in<module> statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素 File"D:\Python36\lib\statistics.py", line 507,in mode 'no unique mode; found %d equally common values'% len(table) statistics.StatisticsError: no unique mode; found 4 equally common values > statistics.mode([1,3,5,7,3]) 3 > statistics.mode(["red","blue","blue","red","green","red","red"]) 'red'
四 pstdev(),返回总体标准差(population standard deviation ,the square root of the population variance)
> statistics.pstdev([1.5,2.5,2.5,2.75,3.25,4.75]) 0.986893273527251 > statistics.pstdev(range(20)) 5.766281297335398
五 pvariance(),返回总体方差(population variance)或二次矩(second moment)
> statistics.pvariance([1.5,2.5,2.5,2.75,3.25,4.75]) 0.9739583333333334 > x =[1,2,3,4,5,10,9,8,7,6] > mu = statistics.mean(x) > mu 5.5 > statistics.pvariance([1,2,3,4,5,10,9,8,7,6], mu) 8.25 > statistics.pvariance(range(20)) 33.25 > statistics.pvariance((random.randint(1,10000)for i in range(30))) >import random > statistics.pvariance((random.randint(1,10000)for i in range(30))) 7117280.4
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无Python统计分析模块statistics用法示例的评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。