铁雪资源网 Design By www.gsvan.com
常用方法
#记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >type(float) dtype('float64') # 查询字符代码 > dtype('f') dtype('float32') > dtype('d') dtype('float64') # 查询双字符代码 > dtype('f8') dtype('float64') # 获取所有字符代码 > sctypeDict.keys() [0, … 'i2', 'int0'] # char 属性用来获取字符代码 > t = dtype('Float64') > t.char 'd' # type 属性用来获取类型 > t.type <type 'numpy.float64'> # str 属性获取完整字符串表示 # 第一个字符是字节序,< 表示小端,> 表示大端,| 表示平台的字节序 > t.str '<f8' # 获取大小 > t.itemsize 8 # 许多函数拥有 dtype 参数 # 传入数值类型、字符代码和 dtype 都可以 > arange(7, dtype=uint16) array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
类型参数及缩写
自定义异构数据类型
基本书写格式
import numpy #定义t的各个字段类型 > t = dtype([('name', str, 40), ('numitems', numpy.int32), ('price',numpy.float32)]) > t dtype([('name', '|S40'), ('numitems', '<i4'), ('price','<f4')]) # 获取字段类型 > t['name'] dtype('|S40') # 使用记录类型创建数组 # 否则它会把记录拆开 > itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13,2.72)], dtype=t) > itemz[1] ('Butter', 13, 2.7200000286102295) #再举个例* >adt = np.dtype("a3, 3u8, (3,4)a10") #3字节字符串、3个64位整型子数组、3*4的10字节字符串数组,注意8为字节 >itemz = np.array([('Butter',[13,2,3],[['d','o','g','s'],['c','a','t','s'],['c','o','w','s']])],dtype=adt) >itemz (b'But', [13, 2, 3], [[b'd', b'o', b'g', b's'], [b'c', b'a', b't', b's'], [b'c', b'o', b'w', b's']])
其他书写格式
#(flexible_dtype, itemsize)第一个大小不固定的参数类型,第二传入大小: > dt = np.dtype((void, 10)) #10位 > dt = np.dtype((str, 35)) # 35字符字符串 > dt = np.dtype(('U', 10)) # 10字符unicode string #(fixed_dtype, shape)第一个传入固定大小的类型参数,第二参数传入个数 > dt = np.dtype((np.int32, (2,2))) # 2*2int子数组 举例: >item = np.array([([12,12],[55,56])], dtype=dt) array([[12, 12], [55, 56]]) > dt = np.dtype(('S10', 1)) # 10字符字符串 > dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2*3结构子数组 #[(field_name, field_dtype, field_shape), …] > dt = np.dtype([('big', '>i4'), ('little', '<i4')]) > dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')]) #{‘names': …, ‘formats': …, ‘offsets': …, ‘titles': …, ‘itemsize': …}: > dt= np.dtype({'names':('Date','Close'),'formats':('S10','f8')}) > dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2],'titles': ['Red pixel', 'Blue pixel']}) #(base_dtype, new_dtype): >dt = np.dtype((np.int32, (np.int8, 4))) //base_dtype被分成4个int8的子数组
以上这篇关于Numpy数据类型对象(dtype)使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Numpy,数据类型,dtype
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无关于Numpy数据类型对象(dtype)使用详解的评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?