铁雪资源网 Design By www.gsvan.com

这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

导入所需包

from scipy.io import loadmat

读取.mat文件

随便从下面文件里读取一个:

基于python读取.mat文件并取出信息

m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构

读出来的m内容:

m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Mon Aug 5 17:14:09 2019',
 '__version__': '1.0',
 '__globals__': [],
 'H_BETA': array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
         nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
         nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
In [29]: m.keys()
Out[29]: dict_keys(['__header__', '__version__', '__globals__', 'H_BETA'])

取出.mat里所需信息

.mat 文件里的数据结构是 dict ,所以取值要按照 key:value 的形式:

In [30]: m['H_BETA']
Out[30]:
array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
        nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan]])

In [31]: type(m['H_BETA'])
Out[31]: numpy.ndarray

预处理数据

上面读出来的数据是 ndarray 类型,为了方便数据的展示,我们可以将其转换为,pandas的DataFrame:

In [32]: import pandas as pd
In [33]: df = pd.DataFrame(m['H_BETA'])
In [34]: df.head()
Out[34]:
    1     2     3     4     5     6     7     8     9     10  
 0.685081 0.367644 0.735058 0.085046 0.104332 0.560731 0.350219 0.758185 0.303823 0.114022 0.452877 
 0.749208 1.109497 0.475063 0.896100 1.117772 0.611356 0.662669 0.603077 0.863930 0.756870 0.725808 
 0.833115 1.063213 0.973646 0.935061 0.631670 0.916800 0.662993 0.543231 0.671558 1.027954 0.526402 
 0.488906 0.932741 0.956622 0.573116 0.893764 0.987304 0.380807 1.211157 0.550213 0.898408 1.153289 
 0.440694 0.503209 0.509693 0.477054 0.344717 -0.054662 1.124213 0.344906 0.612898 0.217625 -0.129715 

[5 rows x 2111 columns]

如此,数据就比较规整了,是保存成文件,还是做其他处理,就by yourself啦!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,读取,mat,文件,取出信息

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“基于python读取.mat文件并取出信息”

暂无基于python读取.mat文件并取出信息的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。