铁雪资源网 Design By www.gsvan.com
在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算
关于softmax_cross_entropy求导的过程,可以参考HERE
示例:
# -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import numpy as np # 对data求梯度, 用于反向传播 data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True) # 多分类标签 one-hot格式 label = Variable(torch.zeros((3, 3))) label[0, 2] = 1 label[1, 1] = 1 label[2, 0] = 1 print(label) # for batch loss = mean( -sum(Pj*logSj) ) # for one : loss = -sum(Pj*logSj) loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1)) loss.backward() print(loss, data.grad)
输出:
tensor([[ 0., 0., 1.], [ 0., 1., 0.], [ 1., 0., 0.]]) # loss:损失 和 input's grad:输入的梯度 tensor(1.4076) tensor([[ 0.0300, 0.0816, -0.1116], [ 0.0300, -0.2518, 0.2217], [-0.3033, 0.0816, 0.2217]])
注意:
对于单输入的loss 和 grad
data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0]]), requires_grad=True) label = Variable(torch.zeros((1, 3))) #分别令不同索引位置label为1 label[0, 0] = 1 # label[0, 1] = 1 # label[0, 2] = 1 print(label) # for batch loss = mean( -sum(Pj*logSj) ) # for one : loss = -sum(Pj*logSj) loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1)) loss.backward() print(loss, data.grad)
其输出:
# 第一组: lable: tensor([[ 1., 0., 0.]]) loss: tensor(2.4076) grad: tensor([[-0.9100, 0.2447, 0.6652]]) # 第二组: lable: tensor([[ 0., 1., 0.]]) loss: tensor(1.4076) grad: tensor([[ 0.0900, -0.7553, 0.6652]]) # 第三组: lable: tensor([[ 0., 0., 1.]]) loss: tensor(0.4076) grad: tensor([[ 0.0900, 0.2447, -0.3348]]) """ 解释: 对于输入数据 tensor([[ 1., 2., 3.]]) softmax之后的结果如下 tensor([[ 0.0900, 0.2447, 0.6652]]) 交叉熵求解梯度推导公式可知 s[0, 0]-1, s[0, 1]-1, s[0, 2]-1 是上面三组label对应的输入数据梯度 """
pytorch提供的softmax, 和log_softmax 关系
# 官方提供的softmax实现 In[2]: import torch ...: import torch.autograd as autograd ...: from torch.autograd import Variable ...: import torch.nn.functional as F ...: import torch.nn as nn ...: import numpy as np In[3]: data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0]]), requires_grad=True) In[4]: data Out[4]: tensor([[ 1., 2., 3.]]) In[5]: e = torch.exp(data) In[6]: e Out[6]: tensor([[ 2.7183, 7.3891, 20.0855]]) In[7]: s = torch.sum(e, dim=1) In[8]: s Out[8]: tensor([ 30.1929]) In[9]: softmax = e/s In[10]: softmax Out[10]: tensor([[ 0.0900, 0.2447, 0.6652]]) In[11]: # 等同于 pytorch 提供的 softmax In[12]: org_softmax = F.softmax(data, dim=1) In[13]: org_softmax Out[13]: tensor([[ 0.0900, 0.2447, 0.6652]]) In[14]: org_softmax == softmax # 计算结果相同 Out[14]: tensor([[ 1, 1, 1]], dtype=torch.uint8) # 与log_softmax关系 # log_softmax = log(softmax) In[15]: _log_softmax = torch.log(org_softmax) In[16]: _log_softmax Out[16]: tensor([[-2.4076, -1.4076, -0.4076]]) In[17]: log_softmax = F.log_softmax(data, dim=1) In[18]: log_softmax Out[18]: tensor([[-2.4076, -1.4076, -0.4076]])
官方提供的softmax交叉熵求解结果
# -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import numpy as np data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True) log_softmax = F.log_softmax(data, dim=1) label = Variable(torch.zeros((3, 3))) label[0, 2] = 1 label[1, 1] = 1 label[2, 0] = 1 print("lable: ", label) # 交叉熵的计算方式之一 loss_fn = torch.nn.NLLLoss() # reduce=True loss.sum/batch & grad/batch # NLLLoss输入是log_softmax, target是非one-hot格式的label loss = loss_fn(log_softmax, torch.argmax(label, dim=1)) loss.backward() print("loss: ", loss, "\ngrad: ", data.grad) """ # 交叉熵计算方式二 loss_fn = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted #CrossEntropyLoss适用于分类问题的损失函数 #input:没有softmax过的nn.output, target是非one-hot格式label loss = loss_fn(data, torch.argmax(label, dim=1)) loss.backward() print("loss: ", loss, "\ngrad: ", data.grad) """ """
输出
lable: tensor([[ 0., 0., 1.], [ 0., 1., 0.], [ 1., 0., 0.]]) loss: tensor(1.4076) grad: tensor([[ 0.0300, 0.0816, -0.1116], [ 0.0300, -0.2518, 0.2217], [-0.3033, 0.0816, 0.2217]])
通过和示例的输出对比, 发现两者是一样的
以上这篇PyTorch的SoftMax交叉熵损失和梯度用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无PyTorch的SoftMax交叉熵损失和梯度用法的评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。