最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。
logistic分类是一个二分类问题,而我们的线性回归函数
的取值在负无穷到正无穷之间,对于分类问题而言,我们希望假设函数的取值在0~1之间,因此logistic函数的假设函数需要改造一下
由上面的公式可以看出,0 < h(x) < 1,这样,我们可以以1/2为分界线
cost function可以这样定义
其中,m是样本的数量,初始时θ可以随机给定一个初始值,算出一个初始的J(θ)值,再执行梯度下降算法迭代,直到达到最优值,我们知道,迭代的公式主要是每次减少一个偏导量
如果将J(θ)代入化简之后,我们发现可以得到和线性回归相同的迭代函数
按照这个迭代函数不断调整θ的值,直到两次J(θ)的值差值不超过某个极小的值之后,即认为已经达到最优解,这其实只是一个相对较优的解,并不是真正的最优解。 其中,α是学习速率,学习速率越大,就能越快达到最优解,但是学习速率过大可能会让惩罚函数最终无法收敛,整个过程python的实现如下
import math ALPHA = 0.3 DIFF = 0.00001 def predict(theta, data): results = [] for i in range(0, data.__len__()): temp = 0 for j in range(1, theta.__len__()): temp += theta[j] * data[i][j - 1] temp = 1 / (1 + math.e ** (-1 * (temp + theta[0]))) results.append(temp) return results def training(training_data): size = training_data.__len__() dimension = training_data[0].__len__() hxs = [] theta = [] for i in range(0, dimension): theta.append(1) initial = 0 for i in range(0, size): hx = theta[0] for j in range(1, dimension): hx += theta[j] * training_data[i][j] hx = 1 / (1 + math.e ** (-1 * hx)) hxs.append(hx) initial += (-1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx))) initial /= size iteration = initial initial = 0 counts = 1 while abs(iteration - initial) > DIFF: print("第", counts, "次迭代, diff=", abs(iteration - initial)) initial = iteration gap = 0 for j in range(0, size): gap += (hxs[j] - training_data[j][0]) theta[0] = theta[0] - ALPHA * gap / size for i in range(1, dimension): gap = 0 for j in range(0, size): gap += (hxs[j] - training_data[j][0]) * training_data[j][i] theta[i] = theta[i] - ALPHA * gap / size for m in range(0, size): hx = theta[0] for j in range(1, dimension): hx += theta[j] * training_data[i][j] hx = 1 / (1 + math.e ** (-1 * hx)) hxs[i] = hx iteration += -1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx)) iteration /= size counts += 1 print('training done,theta=', theta) return theta if __name__ == '__main__': training_data = [[1, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1]] test_data = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 1]] theta = training(training_data) res = predict(theta, test_data) print(res)
运行结果如下
以上这篇python实现logistic分类算法代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?