铁雪资源网 Design By www.gsvan.com

以前tensorflow有bug 在winodws下无法转,但现在好像没有问题了,代码如下

将keras 下的mobilenet_v2转成了tflite

from keras.backend import clear_session
import numpy as np
import tensorflow as tf
clear_session()
np.set_printoptions(suppress=True)
input_graph_name = "../models/weights.best_mobilenet224.h5"
output_graph_name = input_graph_name[:-3] + '.tflite'
converter = tf.lite.TFLiteConverter.from_keras_model_file(model_file=input_graph_name)
converter.post_training_quantize = True
#在windows平台这个函数有问题,无法正常使用
tflite_model = converter.convert()
open(output_graph_name, "wb").write(tflite_model)
print ("generate:",output_graph_name)

补充知识:如何把Tensorflow模型转换成TFLite模型

深度学习迅猛发展,目前已经可以移植到移动端使用了,TensorFlow推出的TensorFlow Lite就是一款把深度学习应用到移动端的框架技术。

使用TensorFlowLite 需要tflite文件模型,这个模型可以由TensorFlow训练的模型转换而成。所以首先需要知道如何保存训练好的TensorFlow模型。

一般有这几种保存形式:

1、Checkpoints

2、HDF5

3、SavedModel等

保存与读取CheckPoint

当模型训练结束,可以用以下代码把权重保存成checkpoint格式

model.save_weights('./MyModel',True)

checkpoints文件仅是保存训练好的权重,不带网络结构,所以做predict时需要结合model使用

如:

model = keras_segmentation.models.segnet.mobilenet_segnet(n_classes=2, input_height=224, input_width=224)
model.load_weights('./MyModel')

保存成H5

把训练好的网络保存成h5文件很简单

model.save('MyModel.h5')

H5转换成TFLite

这里是文章主要内容

我习惯使用H5文件转换成tflite文件

官网代码是这样的

converter = tf.lite.TFLiteConverter.from_keras_model_file('newModel.h5')
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)

但我用的keras 2.2.4版本会报下面错误,好像说是新版的keras把relu6改掉了,找不到方法

ValueError: Unknown activation function:relu6

于是需要自己定义一个relu6

import tensorflow as tf
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils import CustomObjectScope

def relu6(x):
 return K.relu(x, max_value=6)

with CustomObjectScope({'relu6': relu6}):
  converter = tf.lite.TFLiteConverter.from_keras_model_file('newModel.h5')
  tflite_model = converter.convert()
  open("newModel.tflite", "wb").write(tflite_model)

看到生成的tflite文件表示保存成功了

也可以这么查看tflite网络的输入输出

import numpy as np
import tensorflow as tf

# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="newModel.tflite")
interpreter.allocate_tensors()

# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

print(input_details)
print(output_details)

输出了以下信息

[{'name': 'input_1', 'index': 115, 'shape': array([ 1, 224, 224, 3]), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0)}]

[{'name': 'activation_1/truediv', 'index': 6, 'shape': array([ 1, 12544, 2]), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0)}]

两个shape分别表示输入输出的numpy数组结构,dtype是数据类型

以上这篇keras .h5转移动端的.tflite文件实现方式)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,h5,移动端,tflite

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“keras .h5转移动端的.tflite文件实现方式”

暂无keras .h5转移动端的.tflite文件实现方式的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。