in
newDropList = [9,10,11,12,22,50,51,60,61]
newDB = newDB[newDB['groupId'].isin(newDropList)]
直接查询表中groupId列,值为newDropList的记录
not in
newDropList = [9,10,11,12,22,50,51,60,61]
newDB = newDB[-newDB['groupId'].isin(newDropList)]
直接加一个" - " 号即可
补充知识:pandas条件组合筛选和按范围筛选
1、从记录中选出所有fault_code列的值在fault_list= [487, 479, 500, 505]这个范围内的记录
record2=record[record['FAULT_CODE'].isin(fault_list)]
要用.isin 而不能用in,用 in以后选出来的值都是True 和False,然后报错:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any()
2、选出所有WTGS_CODE=20004013的记录
set=20004013
record= record[record['WTGS_CODE'] == set]
3、其次,从记录中选出所有满足set条件且fault_code列的值在fault_list= [487, 479, 500, 505]这个范围内的记录
record_this_month=record[(record['WTGS_CODE']==set)&(record['FAULT_CODE'].isin(fault_list))]
(1)多个条件筛选的时候每个条件都必须加括号。
(2)判断值是否在某一个范围内进行筛选的时候需要使用DataFrame.isin()的isin()函数,而不能使用in。
以上这篇pandas 像SQL一样使用WHERE IN查询条件说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。