铁雪资源网 Design By www.gsvan.com

我就废话不多说了,大家还是直接看代码吧!

import pandas as pd

def get_under_rolling(df,window,user,name):
  df[name] = df[user].iloc[::-1].rolling(window=window).apply(lambda x:x[0]).iloc[::-1]
  return df

if __name__ == '__main__':
  df = pd.DataFrame({'a':[1,2,3,4,5],
          'b':[2,3,4,5,6]})
  # 把b列向下取值作为新的c列
  df = get_under_rolling(df, window=3, user='b',name='c')

原始df

python 实现rolling和apply函数的向下取值操作

新的df

python 实现rolling和apply函数的向下取值操作

补充知识:python:利用rolling和apply对DataFrame进行多列滚动,数据框滚动

看代码~

# 设置一个初始数据框
df1 = [1,2,3,4,5]
df2 = [2,3,4,5,6]
df = pd.DataFrame({'a':list(df1),'b':list(df2)})
print(df)
  a b
 0 1 2
 1 2 3
 2 3 4
 3 4 5
 4 5 6

下面是滚动函数

# 多列滚动函数
# handle对滚动的数据框进行处理
def handle(x,df,name,n):
  df = df[name].iloc[x:x+n,:]
  print(df)
  return 1
# group_rolling 进行滚动 
# n:滚动的行数
# df:目标数据框
# name:要滚动的列名
def group_rolling(n,df,name):
  df_roll = pd.DataFrame({'a':list(range(len(df)-n+1))})
  df_roll['a'].rolling(window=1).apply(lambda x:handle(int(x[0]),df,name,n),raw=True)

对初始数据框进行滚动

其中:

n=2,name=[‘a',‘b']
group_rolling(n=2,df=df,name=['a','b'])

每次滚动的结果如下:

  a b
0 1 2
1 2 3

  a b
1 2 3
2 3 4

  a b
2 3 4
3 4 5

  a b
3 4 5
4 5 6

以上这篇python 实现rolling和apply函数的向下取值操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,rolling,apply,向下取值

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“python 实现rolling和apply函数的向下取值操作”

暂无python 实现rolling和apply函数的向下取值操作的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。