铁雪资源网 Design By www.gsvan.com

使用Keras训练好的模型用来直接进行预测,这个时候我们该怎么做呢?【我这里使用的就是一个图片分类网络】

现在让我来说说怎么样使用已经训练好的模型来进行预测判定把

首先,我们已经又有了model模型,这个模型被保存为model.h5文件

然后我们需要在代码里面进行加载

model = load_model("model.h5")

假设我们自己已经写好了一个load_data函数【load_data最好是返回已经通过了把图片转成numpy的data,以及图片对应的label】

然后我们先加载我们的待预测的数据

data, labels = load_data(<the path of the data>)

然后我们就可以通过模型来预测了

predict = model.predict(data)

得到的predict就是预测的结果啦~

补充知识:keras利用vgg16模型直接预测图片类型时的坑

第一次使用keras中的预训练模型时,若本地没有模型对应的h5文件,程序会自动去github上下载,但国内下载github资源速度太慢,

可以选择直接去搜索下载,下载后将模型(h5文件)放入C:\Users\lovemoon\.keras\models

同样,如果是第一个用预训练模型预测输入图片,解码结果时也会下载一个Json文件,同样可以手动下载后放入C:\Users\lovemoon\.keras\models

以上这篇Keras 加载已经训练好的模型进行预测操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Keras,加载训练,模型预测

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“Keras 加载已经训练好的模型进行预测操作”

暂无Keras 加载已经训练好的模型进行预测操作的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。