铁雪资源网 Design By www.gsvan.com
本文实例为大家分享了Tensorflow之MNIST CNN实现并保存、加载模型的具体代码,供大家参考,具体内容如下
废话不说,直接上代码
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import os #download the data mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] train_images = train_images / 255.0 test_images = test_images / 255.0 def create_model(): # It's necessary to give the input_shape,or it will fail when you load the model # The error will be like : You are trying to load the 4 layer models to the 0 layer model = keras.Sequential([ keras.layers.Conv2D(32,[5,5], activation=tf.nn.relu,input_shape = (28,28,1)), keras.layers.MaxPool2D(), keras.layers.Conv2D(64,[7,7], activation=tf.nn.relu), keras.layers.MaxPool2D(), keras.layers.Flatten(), keras.layers.Dense(576, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model #reshape the shape before using it, for that the input of cnn is 4 dimensions train_images = np.reshape(train_images,[-1,28,28,1]) test_images = np.reshape(test_images,[-1,28,28,1]) #train model = create_model() model.fit(train_images, train_labels, epochs=4) #save the model model.save('my_model.h5') #Evaluate test_loss, test_acc = model.evaluate(test_images, test_labels,verbose = 0) print('Test accuracy:', test_acc)
模型保存后,自己手写了几张图片,放在文件夹C:\pythonp\testdir2下,开始测试
#Load the model new_model = keras.models.load_model('my_model.h5') new_model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) new_model.summary() #Evaluate # test_loss, test_acc = new_model.evaluate(test_images, test_labels) # print('Test accuracy:', test_acc) #Predicte mypath = 'C:\\pythonp\\testdir2' def getimg(mypath): listdir = os.listdir(mypath) imgs = [] for p in listdir: img = plt.imread(mypath+'\\'+p) # I save the picture that I draw myself under Windows, but the saved picture's # encode style is just opposite with the experiment data, so I transfer it with # this line. img = np.abs(img/255-1) imgs.append(img[:,:,0]) return np.array(imgs),len(imgs) imgs = getimg(mypath) test_images = np.reshape(imgs[0],[-1,28,28,1]) predictions = new_model.predict(test_images) plt.figure() for i in range(imgs[1]): c = np.argmax(predictions[i]) plt.subplot(3,3,i+1) plt.xticks([]) plt.yticks([]) plt.imshow(test_images[i,:,:,0]) plt.title(class_names[c]) plt.show()
测试结果
自己手写的图片截的时候要注意,空白部分尽量不要太大,否则测试结果就呵呵了
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无Tensorflow之MNIST CNN实现并保存、加载模型的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。