铁雪资源网 Design By www.gsvan.com
场景:某台机器上有三块卡,想同时开三个程序,放到三块卡上去训练。
策略:CUDA_VISIBLE_DEVICES=1 python train.py就可以指定程序在某块卡上训练。
补充知识:keras指定GPU及显存使用量
指定GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
指定GPU和显存使用量
import os from keras.backend.tensorflow_backend import set_session os.environ["CUDA_VISIBLE_DEVICES"] = "0" config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 set_session(tf.Session(config=config))
指定GPU显存使用按需分配
import keras.backend.tensorflow_backend as KTF import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config) KTF.set_session(sess)
以上这篇keras 指定程序在某块卡上训练实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
keras,指定程序,训练
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无keras 指定程序在某块卡上训练实例的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。