铁雪资源网 Design By www.gsvan.com

最近在学习TensorFlow,比较烦人的是使用tensorflow.examples.tutorials.mnist.input_data读取数据

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('/temp/mnist_data/')
X = mnist.test.images.reshape(-1, n_steps, n_inputs)
y = mnist.test.labels

基于Tensorflow读取MNIST数据集时网络超时的解决方式

时,经常出现网络连接错误

解决方法其实很简单,这里我们可以看一下input_data.py的源代码(这里截取关键部分)

def maybe_download(filename, work_directory):
 """Download the data from Yann's website, unless it's already here."""
 if not os.path.exists(work_directory):
 os.mkdir(work_directory)
 filepath = os.path.join(work_directory, filename)
 if not os.path.exists(filepath):
 filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
 statinfo = os.stat(filepath)
 print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath

可以看到,代码会先检查文件是否存在,如果不存在再进行下载,那么我是不是自己下载数据不就行了?

MNIST的数据集是从Yann LeCun教授的官网下载,下载完成之后修改一下我们读取数据的代码,加上我们下载的路径即可

from tensorflow.examples.tutorials.mnist import input_data
import os

data_path = os.path.join('.', 'temp', 'data')
mnist = input_data.read_data_sets(datapath)
X = mnist.test.images.reshape(-1, n_steps, n_inputs)
y = mnist.test.labels

测试一下

基于Tensorflow读取MNIST数据集时网络超时的解决方式

成功!

补充知识:在tensorflow的使用中,from tensorflow.examples.tutorials.mnist import input_data报错

最近在学习使用python的tensorflow的使用,使用编辑器为spyder,在输入以下代码时会报错:

from tensorflow.examples.tutorials.mnist import input_data

报错内容如下:

from tensorflow.python.autograph.lang.special_functions import stack
ImportError: cannot import name 'stack'

为了解决这个问题,在

File "K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\autograph_init_.py"文件中直接把
from tensorflow.python.autograph.lang.special_functions import stack

这一行注释掉了,问题并没有解决。然后又把下面一行注释掉了:

from tensorflow.python.autograph.lang.special_functions import tensor_list

问题解决,但报了一大顿warning:

WARNING:tensorflow:From C:/Users/phmnku/.spyder-py3/tensorflow_prac/classification.py:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data\train-images-idx3-ubyte.gz
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data\train-labels-idx1-ubyte.gz
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From K:\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\util\tf_should_use.py:189: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.

但是程序好歹能用了

以上这篇基于Tensorflow读取MNIST数据集时网络超时的解决方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Tensorflow,MNIST数据集,网络超时

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“基于Tensorflow读取MNIST数据集时网络超时的解决方式”

暂无基于Tensorflow读取MNIST数据集时网络超时的解决方式的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。