铁雪资源网 Design By www.gsvan.com

如下所示:

with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z3,z3]
[tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]

输出结果

[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>,
 <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>,
 <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>],
 [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>,
 <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]]
with tf.GradientTape(persistent=True) as tape:
 z1 = f(w1, w2 + 2.)
 z2 = f(w1, w2 + 5.)
 z3 = f(w1, w2 + 7.)
 z = [z1,z2,z3]
tape.gradient(z, [w1, w2])

输出结果

[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,

<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]

总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。

补充知识:Python/Numpy 矩阵运算符号@

如下所示:

A = np.matrix('3 1; 8 2')

B = np.matrix('6 1; 7 9')

A@B
matrix([[25, 12],
  [62, 26]])

以上这篇TensorFlow Autodiff自动微分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
TensorFlow,Autodiff,自动微分

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“TensorFlow Autodiff自动微分详解”

暂无TensorFlow Autodiff自动微分详解的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。