铁雪资源网 Design By www.gsvan.com

在学习xg的 时候,想画学习曲线,但无奈没有没有这个 evals_result_

AttributeError: 'Booster' object has no attribute 'evals_result_'

因为不是用的分类器或者回归器,而且是使用的train而不是fit进行训练的,看过源码fit才有evals_result_这个,导致训练后没有这个,但是又想获取学习曲线,因此肯定还需要获取训练数据。

运行的结果 上面有数据,于是就想自己解析屏幕的数据试一下,屏幕可以看到有我们迭代过程的数据,因此想直接获取屏幕上的数据,思维比较low但是简单粗暴。

获取python运行输出的数据并解析存为dataFrame实例

接下来分两步完成:

1) 获取屏幕数据

import subprocess
import pandas as pd
top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE)
out, err = top_info.communicate()
out_info = out.decode('unicode-escape')
lines=out_info.split('\n')

注:这里的main.py就是自己之前执行的python文件

2) 解析文件数据:

ln=0
lst=dict()
for line in lines:
 if line.strip().startswith('[{}] train-auc:'.format(ln)):
 if ln not in lst.keys():
  lst.setdefault(ln, {})
 tmp = line.split('\t')
 t1=tmp[1].split(':')
 t2=tmp[2].split(':')
 if str(t1[0]) not in lst[ln].keys():
  lst[ln].setdefault(str(t1[0]), 0)
 if str(t2[0]) not in lst[ln].keys():
  lst[ln].setdefault(str(t2[0]), 0)
 lst[ln][str(t1[0])]=t1[1]
 lst[ln][str(t2[0])]=t2[1]
 ln+=1
json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index()
json_df.columns=['numIter','eval-auc','train-auc']
print(json_df)

整体代码:

import subprocess
import pandas as pd
top_info = subprocess.Popen(["python", "main.py"], stdout=subprocess.PIPE)
out, err = top_info.communicate()
out_info = out.decode('unicode-escape')
lines=out_info.split('\n')
 
ln=0
lst=dict()
for line in lines:
    if line.strip().startswith('[{}]    train-auc:'.format(ln)):
        if ln not in lst.keys():
            lst.setdefault(ln, {})
        tmp = line.split('\t')
        t1=tmp[1].split(':')
        t2=tmp[2].split(':')
        if str(t1[0]) not in lst[ln].keys():
            lst[ln].setdefault(str(t1[0]), 0)
        if str(t2[0]) not in lst[ln].keys():
            lst[ln].setdefault(str(t2[0]), 0)
        lst[ln][str(t1[0])]=t1[1]
        lst[ln][str(t2[0])]=t2[1]
        ln+=1
json_df=pd.DataFrame(pd.DataFrame(lst).values.T, index=pd.DataFrame(lst).columns, columns=pd.DataFrame(lst).index).reset_index()
json_df.columns=['numIter','eval-auc','train-auc']
print(json_df)

看下效果:

获取python运行输出的数据并解析存为dataFrame实例

以上这篇获取python运行输出的数据并解析存为dataFrame实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,dataFrame,输出数据

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“获取python运行输出的数据并解析存为dataFrame实例”

暂无获取python运行输出的数据并解析存为dataFrame实例的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。