铁雪资源网 Design By www.gsvan.com

Django 的 filter、exclude 等方法使得对数据库的查询很方便了。这在数据量较小的时候还不错,但如果数据量很大,或者查询条件比较复杂,那么查询效率就会很低。

提高数据库查询效率可以通过原生 SQL 语句来实现,但是它的缺点就是需要开发者熟练掌握 SQL。倘若查询条件是动态变化的,则编写 SQL 会更加困难。

对于以便捷著称的 Django,怎么能忍受这样的事。于是就有了 Aggregation聚合 。

聚合最好的例子就是官网给的案例了:

# models.py

from django.db import models

class Author(models.Model):
  name = models.CharField(max_length=100)
  age = models.IntegerField()

class Publisher(models.Model):
  name = models.CharField(max_length=300)

class Book(models.Model):
  name = models.CharField(max_length=300)
  pages = models.IntegerField()
  price = models.DecimalField(max_digits=10, decimal_places=2)
  rating = models.FloatField()
  authors = models.ManyToManyField(Author)
  publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)
  pubdate = models.DateField()

class Store(models.Model):
  name = models.CharField(max_length=300)
  books = models.ManyToManyField(Book)

接下来可以这样求所有书籍的平均价格:

> from django.db.models import Avg, Max, Min

> Book.objects.all().aggregate(Avg('price'))
{'price__avg': Decimal('30.67')}

实际上可以省掉 all() :

> Book.objects.aggregate(Avg('price'))
{'price__avg': Decimal('30.67')}

还可以指定返回的键名:

> Book.objects.aggregate(price_avg=Avg('price'))
{'price_avg': Decimal('30.67')}

如果要获取所有书籍中的最高价格:

> Book.objects.aggregate(Max('price'))
{'price__max': Decimal('44')}

获取所有书籍中的最低价格:

> Book.objects.aggregate(Min('price'))
{'price__min': Decimal('12')}

aggregate() 方法返回的不再是 QuerySet 了,而是一个包含查询结果的字典。如果我要对 QerySet 中每个元素都进行聚合计算、并且返回的仍然是 QuerySet ,那就要用到 annotate() 方法了。

annotate 翻译过来就是 注解 ,它的作用有点像给 QuerySet 中的每个元素临时贴上一个临时的字段,字段的值是分组聚合运算的结果。

比方说要给查询集中的每本书籍都增加一个字段,字段内容是外链到书籍的作者的数量:

> from django.db.models import Count

> q = Book.objects.annotate(Count('authors'))
> q[0].authors__count
3

与 aggregate() 的语法类似,也可以给这个字段自定义个名字:

> q = Book.objects.annotate(a_count=Count('authors'))

跨外链查询字段也是可以的:

> s = Store.objects.annotate(min_price=Min('books__price'), max_price=Max('books__price'))

> s[0].min_price
Decimal('12')
> s[0].max_price
Decimal('44')

既然 annotate() 返回的是查询集,那么自然也可以和 filter() 、 exclude() 等查询方法组合使用:

> b = Book.objects.filter(name__startswith="Django").annotate(num_authors=Count('authors'))
> b[0].num_authors
4

联用的时候 filter 、 annotate 的顺序会影响返回结果,所以逻辑要想清楚。

也可以排序:

> Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')

总而言之, aggregate 和 annotate 用于组合查询。当你需要对某些字段进行聚合操作时(比如Sum, Avg, Max),请使用 aggregate 。如果你想要对数据集先进行分组(Group By)然后再进行某些聚合操作或排序时,请使用 annotate 。

进行此类查询有时候容易让人迷惑,如果你对查询的结果有任何的疑问,最好的方法就是直接查看它所执行的 SQL 原始语句,像这样:

> b = Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')
> print(b.query)
SELECT "aggregation_book"."id", "aggregation_book"."name",
"aggregation_book"."pages", "aggregation_book"."price",
"aggregation_book"."rating", "aggregation_book"."publisher_id", 
"aggregation_book"."pubdate", COUNT("aggregation_book_authors"."author_id") 
AS "num_authors" FROM "aggregation_book" LEFT OUTER JOIN "aggregation_book_authors" 
ON ("aggregation_book"."id" = "aggregation_book_authors"."book_id") 
GROUP BY "aggregation_book"."id", "aggregation_book"."name",
"aggregation_book"."pages", "aggregation_book"."price",
"aggregation_book"."rating", "aggregation_book"."publisher_id", 
"aggregation_book"."pubdate"
ORDER BY "num_authors" ASC

相关文档: Aggregation

复合使用聚合时的相互干扰问题: Count and Sum annotations interfere with each other

总结

标签:
django,aggregation聚合,django3教程

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“Django中Aggregation聚合的基本使用方法”

暂无Django中Aggregation聚合的基本使用方法的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。