铁雪资源网 Design By www.gsvan.com
1. 数据准备
在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。
2. 数据读取
# 存储数据集的目录 base_dir = 'E:/python learn/dog_and_cat/data/' # 训练、验证数据集的目录 train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') # 猫训练图片所在目录 train_cats_dir = os.path.join(train_dir, 'cats') # 狗训练图片所在目录 train_dogs_dir = os.path.join(train_dir, 'dogs') # 猫验证图片所在目录 validation_cats_dir = os.path.join(validation_dir, 'cats') # 狗验证数据集所在目录 validation_dogs_dir = os.path.join(validation_dir, 'dogs') print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
3. 模型建立
# 搭建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=1e-4), metrics=['acc'])
4. 模型训练
train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, # target directory target_size=(150, 150), # resize图片 batch_size=20, class_mode='binary' ) validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary' ) for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break hist = model.fit_generator( train_generator, steps_per_epoch=100, epochs=10, validation_data=validation_generator, validation_steps=50 ) model.save('cats_and_dogs_small_1.h5')
5. 模型评估
acc = hist.history['acc'] val_acc = hist.history['val_acc'] loss = hist.history['loss'] val_loss = hist.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.legend() plt.show()
6. 预测
imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg' test_image = image.load_img(imagename, target_size = (150, 150)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) result = model.predict(test_image) if result[0][0] == 1: prediction ='dog' else: prediction ='cat' print(prediction)
代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测
补充知识:keras 猫狗大战自搭网络以及vgg16应用
导入模块
import os import numpy as np import tensorflow as tf import random import seaborn as sns import matplotlib.pyplot as plt import keras from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16, preprocess_input from sklearn.model_selection import train_test_split
加载数据集
def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False): train_images= [data_dir + i for i in os.listdir(data_dir)] random.shuffle(train_images) def read_image(file_path, preprocess): img = image.load_img(file_path, target_size=(height, width)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) # if preprocess: # x = preprocess_input(x) return x def prep_data(images, proprocess): count = len(images) data = np.ndarray((count, height, width, channels), dtype = np.float32) for i, image_file in enumerate(images): image = read_image(image_file, preprocess) data[i] = image return data def read_labels(file_path): labels = [] for i in file_path: label = 1 if 'dog' in i else 0 labels.append(label) return labels X = prep_data(train_images, preprocess) labels = read_labels(train_images) assert X.shape[0] == len(labels) print("Train shape: {}".format(X.shape)) return X, labels
读取数据集
# 读取图片 WIDTH = 150 HEIGHT = 150 CHANNELS = 3 X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)
查看数据集信息
# 统计y sns.countplot(y) # 显示图片 def show_cats_and_dogs(X, idx): plt.figure(figsize=(10,5), frameon=True) img = X[idx,:,:,::-1] img = img/255 plt.imshow(img) plt.show() for idx in range(0,3): show_cats_and_dogs(X, idx) train_X = X[0:17500,:,:,:] train_y = y[0:17500] test_X = X[17500:25000,:,:,:] test_y = y[17500:25000] train_X.shape test_X.shape
自定义神经网络层数
input_layer = Input((WIDTH, HEIGHT, CHANNELS)) # 第一层 z = input_layer z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Flatten()(z) z = Dense(64)(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = Dropout(0.5)(z) z = Dense(1)(z) z = Activation('sigmoid')(z) model = Model(input_layer, z) model.compile( optimizer = keras.optimizers.RMSprop(), loss = keras.losses.binary_crossentropy, metrics = [keras.metrics.binary_accuracy] ) model.summary()
训练模型
history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True) score = model.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
复用vgg16模型
def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)): vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape) for layer in vgg16.layers: layer.trainable = False last = vgg16.output # 后面加入自己的模型 x = Flatten()(last) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=vgg16.input, outputs=x) return model
编译模型
model_vgg16 = vgg16_model() model_vgg16.summary() model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])
训练模型
# 训练模型 history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True) score = model_vgg16.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
keras,分类,二分类
铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com
暂无keras分类之二分类实例(Cat and dog)的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。