问题
你需要对浮点数执行精确的计算操作,并且不希望有任何小误差的出现。
解决方案
浮点数的一个普遍问题是它们并不能精确的表示十进制数。 并且,即使是最简单的数学运算也会产生小的误差,比如:
> a = 4.2 > b = 2.1 > a + b 6.300000000000001 > (a + b) == 6.3 False >
这些错误是由底层CPU和IEEE 754标准通过自己的浮点单位去执行算术时的特征。 由于Python的浮点数据类型使用底层表示存储数据,因此你没办法去避免这样的误差。
如果你想更加精确(并能容忍一定的性能损耗),你可以使用 decimal 模块:
> from decimal import Decimal > a = Decimal('4.2') > b = Decimal('2.1') > a + b Decimal('6.3') > print(a + b) 6.3 > (a + b) == Decimal('6.3') True
初看起来,上面的代码好像有点奇怪,比如我们用字符串来表示数字。 然而, Decimal 对象会像普通浮点数一样的工作(支持所有的常用数学运算)。 如果你打印它们或者在字符串格式化函数中使用它们,看起来跟普通数字没什么两样。
decimal 模块的一个主要特征是允许你控制计算的每一方面,包括数字位数和四舍五入运算。 为了这样做,你先得创建一个本地上下文并更改它的设置,比如:
> from decimal import localcontext > a = Decimal('1.3') > b = Decimal('1.7') > print(a / b) 0.7647058823529411764705882353 > with localcontext() as ctx: ... ctx.prec = 3 ... print(a / b) ... 0.765 > with localcontext() as ctx: ... ctx.prec = 50 ... print(a / b) ... 0.76470588235294117647058823529411764705882352941176 >
讨论
decimal
模块实现了IBM的”通用小数运算规范”。不用说,有很多的配置选项这本书没有提到。
Python新手会倾向于使用 decimal
模块来处理浮点数的精确运算。 然而,先理解你的应用程序目的是非常重要的。 如果你是在做科学计算或工程领域的计算、电脑绘图,或者是科学领域的大多数运算, 那么使用普通的浮点类型是比较普遍的做法。 其中一个原因是,在真实世界中很少会要求精确到普通浮点数能提供的17位精度。 因此,计算过程中的那么一点点的误差是被允许的。 第二点就是,原生的浮点数计算要快的多-有时候你在执行大量运算的时候速度也是非常重要的。
即便如此,你却不能完全忽略误差。数学家花了大量时间去研究各类算法,有些处理误差会比其他方法更好。 你也得注意下减法删除以及大数和小数的加分运算所带来的影响。比如:
> nums = [1.23e+18, 1, -1.23e+18] > sum(nums) # Notice how 1 disappears 0.0 >
上面的错误可以利用 math.fsum()
所提供的更精确计算能力来解决:
> import math > math.fsum(nums) 1.0 >
然而,对于其他的算法,你应该仔细研究它并理解它的误差产生来源。
总的来说, decimal
模块主要用在涉及到金融的领域。 在这类程序中,哪怕是一点小小的误差在计算过程中蔓延都是不允许的。 因此, decimal
模块为解决这类问题提供了方法。 当Python和数据库打交道的时候也通常会遇到 Decimal 对象,并且,通常也是在处理金融数据的时候。
以上就是Python如何执行精确的浮点数运算的详细内容,更多关于Python执行精确的浮点数运算的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。