前言:
之前学习了用python爬虫的基本知识,现在计划用爬虫去做一些实际的数据统计功能。由于前段时间演员的诞生带火了几个年轻的实力派演员,想用爬虫程序搜索某论坛中对于某些演员的讨论热度,并按照日期统计每天的讨论量。
这个项目总共分为两步:
1.获取所有帖子的链接:
将最近一个月内的帖子链接保存到数组中
2.从回帖中搜索演员名字:
从数组中打开链接,翻出该链接的所有回帖,在回帖中查找演员的名字
获取所有帖子的链接:
搜索的范围依然是以虎扑影视区为界限。虎扑影视区一天约5000个回帖,一月下来超过15万回帖,作为样本来说也不算小,有一定的参考价值。
完成这一步骤,主要分为以下几步:
1.获取当前日期
2.获取30天前的日期
3.记录从第一页往后翻的所有发帖链接
1.获取当前日期
这里我们用到了datetime模块。使用datetime.datetime.now(),可以获取当前的日期信息以及时间信息。在这个项目中,只需要用到日期信息就好。
2.获取30天前的日期
用datetime模块的优点在于,它还有一个很好用的函数叫做timedelta,可以自行计算时间差。当给定参数days=30时,就会生成30天的时间差,再用当前日期减去delta,可以得到30天前的日期,将该日期保存为startday,即开始进行统计的日期。不然计算时间差需要自行考虑跨年闰年等因素,要通过一个较为复杂的函数才可以完成。
today = datetime.datetime.now()
delta = datetime.timedelta(days=30)
i = "%s" %(today - delta)
startday = i.split(' ')[0]
today = "%s" %today
today = today.split(' ')[0]
在获得开始日期与结束日期后,由于依然需要记录每一天每个人的讨论数,根据这两个日期生成两个字典,分别为actor1_dict与actor2_dict。字典以日期为key,以当日讨论数目作为value,便于每次新增查找记录时更新对应的value值。
strptime, strftime = datetime.datetime.strptime, datetime.datetime.strftime
days = (strptime(today, "%Y-%m-%d") - strptime(startday, "%Y-%m-%d")).days
for i in range(days+1):
temp = strftime(strptime(startday, "%Y-%m-%d") + datetime.timedelta(i), "%Y-%m-%d")
actor1_dict[temp] = 0
actor2_dict[temp] = 0
3.记录从第一页往后翻的所有发帖链接
比较发帖时间,如果小于30天前的日期,则获取发帖链接结束,返回当前拿到的链接数组,代码如下
def all_movie_post(ori_url): i = datetime.datetime.now() delta = datetime.timedelta(days=30) i = "%s" %(i - delta) day = i.split(' ')[0] # 获得30天前的日子 print day user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)' headers = { 'User-Agent' : user_agent } post_list = [] for i in range(1,100): request = urllib2.Request(ori_url + '-{}'.format(i),headers = headers) response = urllib2.urlopen(request) content = response.read().decode('utf-8') pattern = re.compile('<a href="(.*" rel="external nofollow" class="truetit" >.*"color:#808080;cursor: initial; ">(.*"text-align: center">"htmlcode">
if i == 0: index = content.find('更多亮了的回帖') if index >= 0: content = content[index:] else: index = content.find('我要推荐') content = content[index:]去除的规则其实并不重要,因为每个论坛都有自己的格式,只要能搞清楚源代码中是怎么写的,剩下的操作就可以自己根据规则进行。
每个回帖格式大致如图4,
用对应的正则表达式再去匹配,找到每个帖子每一个回帖的内容,在内容中搜索演员名字,即一开始的actor_1与actor_2,如果搜到,则在对应回帖日期下+1。
最终将两位演员名字出现频率返回,按日期记录的字典由于是全局变量,不需要返回。
web_str = '<span class="stime">(.*?) .*?</span>.*?<tbody>[\s]*<tr>[\s]*<td>(.*?)<br />' #找到回帖内容的正则 pattern = re.compile(web_str, re.S) items = re.findall(pattern,content) for item in items: #if '<b>引用' in item: #如果引用别人的回帖,则去除引用部分 #try: #item = item.split('</blockquote>')[1] #except: #print item #print item.decode('utf-8') if actor_1 in item[1]: actor1_dict[item[0]] += 1 actor_1_freq += 1 if actor_2 in item[1]: actor2_dict[item[0]] += 1 actor_2_freq += 1至此,我们就利用爬虫知识,成功完成对论坛关键字的频率搜索了。
这只是一个例子,关键字可以任意,这也不只是一个针对演员的诞生而写的程序。将演员名字换成其他词,就可以做到类似“您的年度关键字”这样的结果,根据频率大小来显示文字大小。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com