大家好,我们的git专题已经更新结束了,所以开始继续给大家写一点设计模式的内容。
今天给大家介绍的设计模式非常简单,叫做iterator,也就是迭代器模式。迭代器是Python语言当中一个非常重要的内容,借助迭代器我们可以很方便地实现很多复杂的功能。在深度学习当中,数据的获取往往也是通过迭代器实现的。因此这部分的内容非常重要,推荐大家一定要掌握。
简单案例
在开始介绍设计模式之前,我们先来看一个简单的需求。假设现在我们需要根据传入的变量获取每周的前几天,比如说我们传入3返回的就是[Mon, Tue, Wed],我们传入5返回[Mon, Tue, Wed, Thu, Fri]。这个需求大家应该都能理解,非常非常简单。
如果用一个函数来实现的话,就是这样:
def return_days(n): week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] return week[:n]
你看三行代码就实现了,在这个问题场景当中这样写当然是没有问题。但假如我们把题目稍微变一变,这里的week不是一个固定的数据,而是从上游或者是某个文件当中读取的。这里的n也是一个很大的数,我们把这个函数改写成这样:
def get_data(n): data = [] for i in range(n): data.append(get_from_upstream()) return data
我们假设get_from_upstream这个函数当中实现了获取数据的具体逻辑,那么上面这一段函数有一个什么问题?
有些同学会说这没有问题啊,因为像是其他语言实现数据获取的时候也都是这么干的。的确,像是Java等语言可能都是这么干的。但是其他语言这么干没错,不代表Python这么干也没错。因为我们没有把Python的能力发挥到最大。
这里有两个问题,第一个问题是延迟,因为前面说了,n是一个很大的数。我们从上游获取数据,无论是通过网络还是文件读取,本质上都是IO操作,IO操作的延迟是非常大的。那么我们把这n条数据全部搜集完可能需要很长的时间,导致下游的漫长等待。第二个问题就是内存,因为我们存储了这n条数据一起返回的,如果n很大,对于内存的开销压力也很大,如果机器内存不够很有可能导致崩溃。
那怎么解决呢?
其实解决的方法很简单,如果对迭代器熟悉的话,会发现迭代器针对的恰恰是这两个问题。我们把上面的逻辑改写成迭代器实现即可,这也就是iterator模式。
iterator模式
iterator模式严格说起来其实只是迭代器的一种应用,它非常巧妙地将迭代器与匿名函数结合在一起,里面也没有太多的门道可以说,我们把刚才的代码改写一下,细节都在代码当中。
def get_data(n): for i in range(n): yield get_from_upstream() data_10 = lambda: get_data(10) data_100 = lambda: get_data(100) # use for d in data_10: print(d)
很简单吧,但可能你要问了,我们既然写出了get_data这个迭代器,那么我们使用的时候直接for d in get_data(10)这样用不就好了,为什么中间要用匿名函数包一层呢?
道理也很简单,如果这个数据是我们自己使用,当然是没必要中间包一层的。但如果我们是传给下游使用的话,对于下游来说它肯定是不希望考虑上游太多的细节的,越简单越好。所以我们直接丢一个包装好的迭代器过去,下游直接call即可。否则的话,下游还需要感知get_data这个函数传入的参数,显然是不够合理的。
以上就是学会迭代器设计模式,帮你大幅提升python性能的详细内容,更多关于python 迭代器设计模式的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com