铁雪资源网 Design By www.gsvan.com

首先说明代码只是帮助理解,并未写出梯度下降部分,默认参数已经被固定,不影响理解。代码主要实现RNN原理,只使用numpy库,不可用于GPU加速。

import numpy as np


class Rnn():

  def __init__(self, input_size, hidden_size, num_layers, bidirectional=False):
    self.input_size = input_size
    self.hidden_size = hidden_size
    self.num_layers = num_layers
    self.bidirectional = bidirectional

  def feed(self, x):
    '''

    :param x: [seq, batch_size, embedding]
    :return: out, hidden
    '''

    # x.shape [sep, batch, feature]
    # hidden.shape [hidden_size, batch]
    # Whh0.shape [hidden_size, hidden_size] Wih0.shape [hidden_size, feature]
    # Whh1.shape [hidden_size, hidden_size] Wih1.size [hidden_size, hidden_size]

    out = []
    x, hidden = np.array(x), [np.zeros((self.hidden_size, x.shape[1])) for i in range(self.num_layers)]
    Wih = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(1, self.num_layers)]
    Wih.insert(0, np.random.random((self.hidden_size, x.shape[2])))
    Whh = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(self.num_layers)]

    time = x.shape[0]
    for i in range(time):
      hidden[0] = np.tanh((np.dot(Wih[0], np.transpose(x[i, ...], (1, 0))) +
               np.dot(Whh[0], hidden[0])
               ))

      for i in range(1, self.num_layers):
        hidden[i] = np.tanh((np.dot(Wih[i], hidden[i-1]) +
                   np.dot(Whh[i], hidden[i])
                   ))

      out.append(hidden[self.num_layers-1])

    return np.array(out), np.array(hidden)


def sigmoid(x):
  return 1.0/(1.0 + 1.0/np.exp(x))


if __name__ == '__main__':
  rnn = Rnn(1, 5, 4)
  input = np.random.random((6, 2, 1))
  out, h = rnn.feed(input)
  print(f'seq is {input.shape[0]}, batch_size is {input.shape[1]} ', 'out.shape ', out.shape, ' h.shape ', h.shape)
  # print(sigmoid(np.random.random((2, 3))))
  #
  # element-wise multiplication
  # print(np.array([1, 2])*np.array([2, 1]))
标签:
numpy实现RNN,numpy,RNN

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“numpy实现RNN原理实现”

暂无numpy实现RNN原理实现的评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。