【源码GitHub地址】:点击进入
1. 问题描述
之前写了一篇关于《pytorch Dataset, DataLoader产生自定义的训练数据》的博客,但存在一个问题,我们不能在Dataset做一些数据清理,如果我们传递给Dataset数据,本身存在问题,那么迭代过程肯定出错的。
比如我把很多图片路径都传递给Dataset,如果图片路径都是正确的,且图片都存在也没有损坏,那显然运行是没有问题的;
但倘若传递给Dataset的图片路径有些图片是不存在,这时你通过Dataset读取图片数据,然后再迭代返回,就会出现类似如下的错误:
File "D:\ProgramData\Anaconda3\envs\pytorch-py36\lib\site-packages\torch\utils\data\_utils\collate.py", line 68, in <listcomp> return [default_collate(samples) for samples in transposed]
File "D:\ProgramData\Anaconda3\envs\pytorch-py36\lib\site-packages\torch\utils\data\_utils\collate.py", line 70, in default_collate
raise TypeError((error_msg_fmt.format(type(batch[0])))) TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'NoneType'>
2. 一般的解决方法
一般的解决方法也很简单粗暴,就是在传递数据给Dataset前,就做数据清理,把不存在的图片,损坏的数据都提前清理掉。
是的,这个是最简单粗暴的。
3. 另一种解决方法:自定义返回数据的规则:collate_fn()校对函数
我们希望不管传递什么处理给Dataset,Dataset都进行处理,如果不存在或者异常,就返回None,而在DataLoader时,对于不存为None的数据,都去除掉。
这样就保证在迭代过程中,DataLoader获得batch数据都是正确的。
比如读取batch_size=5的图片数据,如果其中有1个(或者多个)图片是不存在,那么返回的batch应该把不存在的数据过滤掉,即返回5-1=4大小的batch的数据。
是的,我要实现的就是这个功能:返回的batch数据会自定清理掉不合法的数据。
3.1 Pytorch数据处理函数:Dataset和 DataLoader
Pytorch有两个数据处理函数:Dataset和 DataLoader
from torch.utils.data import Dataset, DataLoader
其中Dataset用于定义数据的读取和预处理操作,而DataLoader用于加载并产生批训练数据。
torch.utils.data.DataLoader参数说明:
DataLoader(object)可用参数:
1、dataset(Dataset)
传入的数据集
2、batch_size(int, optional)
每个batch有多少个样本
3、shuffle(bool, optional)
在每个epoch开始的时候,对数据进行重新排序
4、sampler(Sampler, optional)
自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
5、batch_sampler(Sampler, optional)
与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
6、num_workers (int, optional)
这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
7、collate_fn (callable, optional)
将一个list的sample组成一个mini-batch的函数
8、pin_memory (bool, optional)
如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.
9、drop_last (bool, optional)
如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。
10、timeout(numeric, optional)
如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
11、worker_init_fn (callable, optional)
每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
我们要用到的是collate_fn()回调函数
3.2 自定义collate_fn()函数:
torch.utils.data.DataLoader的collate_fn()用于设置batch数据拼接方式,默认是default_collate函数,但当batch中含有None等数据时,默认的default_collate校队方法会出现错误。因此,我们需要自定义collate_fn()函数:
方法也很简单:只需在原来的default_collate函数中添加下面几句代码:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了。
# 这里添加:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了 if isinstance(batch, list): batch = [(image, image_id) for (image, image_id) in batch if image is not None] if batch==[]: return (None,None)
dataset_collate.py:
# -*-coding: utf-8 -*- """ @Project: pytorch-learning-tutorials @File : dataset_collate.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-06-07 17:09:13 """ r""""Contains definitions of the methods used by the _DataLoaderIter workers to collate samples fetched from dataset into Tensor(s). These **needs** to be in global scope since Py2 doesn't support serializing static methods. """ import torch import re from torch._six import container_abcs, string_classes, int_classes _use_shared_memory = False r"""Whether to use shared memory in default_collate""" np_str_obj_array_pattern = re.compile(r'[SaUO]') error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}" numpy_type_map = { 'float64': torch.DoubleTensor, 'float32': torch.FloatTensor, 'float16': torch.HalfTensor, 'int64': torch.LongTensor, 'int32': torch.IntTensor, 'int16': torch.ShortTensor, 'int8': torch.CharTensor, 'uint8': torch.ByteTensor, } def collate_fn(batch): ''' collate_fn (callable, optional): merges a list of samples to form a mini-batch. 该函数参考touch的default_collate函数,也是DataLoader的默认的校对方法,当batch中含有None等数据时, 默认的default_collate校队方法会出现错误 一种的解决方法是: 判断batch中image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了 :param batch: :return: ''' r"""Puts each data field into a tensor with outer dimension batch size""" # 这里添加:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了 if isinstance(batch, list): batch = [(image, image_id) for (image, image_id) in batch if image is not None] if batch==[]: return (None,None) elem_type = type(batch[0]) if isinstance(batch[0], torch.Tensor): out = None if _use_shared_memory: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = batch[0].storage()._new_shared(numel) out = batch[0].new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(error_msg_fmt.format(elem.dtype)) return collate_fn([torch.from_numpy(b) for b in batch]) if elem.shape == (): # scalars py_type = float if elem.dtype.name.startswith('float') else int return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) elif isinstance(batch[0], float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(batch[0], int_classes): return torch.tensor(batch) elif isinstance(batch[0], string_classes): return batch elif isinstance(batch[0], container_abcs.Mapping): return {key: collate_fn([d[key] for d in batch]) for key in batch[0]} elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'): # namedtuple return type(batch[0])(*(collate_fn(samples) for samples in zip(*batch))) elif isinstance(batch[0], container_abcs.Sequence): transposed = zip(*batch)#ok return [collate_fn(samples) for samples in transposed] raise TypeError((error_msg_fmt.format(type(batch[0]))))
测试方法:
# -*-coding: utf-8 -*- """ @Project: pytorch-learning-tutorials @File : dataset.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-03-07 18:45:06 """ import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader import numpy as np from utils import dataset_collate import os import cv2 from PIL import Image def read_image(path,mode='RGB'): ''' :param path: :param mode: RGB or L :return: ''' return Image.open(path).convert(mode) class TorchDataset(Dataset): def __init__(self, image_id_list, image_dir, resize_height=256, resize_width=256, repeat=1, transform=None): ''' :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径 :param resize_height 为None时,不进行缩放 :param resize_width 为None时,不进行缩放, PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放 :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize :param transform:预处理 ''' self.image_dir = image_dir self.image_id_list=image_id_list self.len = len(image_id_list) self.repeat = repeat self.resize_height = resize_height self.resize_width = resize_width self.transform= transform def __getitem__(self, i): index = i % self.len # print("i={},index={}".format(i, index)) image_id = self.image_id_list[index] image_path = os.path.join(self.image_dir, image_id) img = self.load_data(image_path) if img is None: return None,image_id img = self.data_preproccess(img) return img,image_id def __len__(self): if self.repeat == None: data_len = 10000000 else: data_len = len(self.image_id_list) * self.repeat return data_len def load_data(self, path): ''' 加载数据 :param path: :param resize_height: :param resize_width: :param normalization: 是否归一化 :return: ''' try: image = read_image(path) except Exception as e: image=None print(e) # image = image_processing.read_image(path)#用opencv读取图像 return image def data_preproccess(self, data): ''' 数据预处理 :param data: :return: ''' if self.transform is not None: data = self.transform(data) return data if __name__=='__main__': resize_height = 224 resize_width = 224 image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"] image_dir="../dataset/test_images/images" # 相关预处理的初始化 '''class torchvision.transforms.ToTensor把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据 # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。 ''' train_transform = transforms.Compose([ transforms.Resize(size=(resize_height, resize_width)), # transforms.RandomHorizontalFlip(),#随机翻转图像 transforms.RandomCrop(size=(resize_height, resize_width), padding=4), # 随机裁剪 transforms.ToTensor(), # 吧shape=(H,W,C)->换成shape=(C,H,W),并且归一化到[0.0, 1.0]的torch.FloatTensor类型 # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))#给定均值(R,G,B) 方差(R,G,B),将会把Tensor正则化 ]) epoch_num=2 #总样本循环次数 batch_size=5 #训练时的一组数据的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数 train_data = TorchDataset(image_id_list=image_id_list, image_dir=image_dir, resize_height=resize_height, resize_width=resize_width, repeat=1, transform=train_transform) # 使用默认的default_collate会报错 # train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # 使用自定义的collate_fn train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False, collate_fn=dataset_collate.collate_fn) # [1]使用epoch方法迭代,TorchDataset的参数repeat=1 for epoch in range(epoch_num): for step,(batch_image, batch_label) in enumerate(train_loader): if batch_image is None and batch_label is None: print("batch_image:{},batch_label:{}".format(batch_image, batch_label)) continue image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] cv2.imshow("image",image) cv2.waitKey(2000) print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
输出结果说明:
batch_size=5,输入图片列表image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"] ,其中"ddd.jpg","111.jpg"是不存在的,resize_width=224,正常情况下返回的数据应该是torch.Size([5, 3, 224, 224]),但由于"ddd.jpg","111.jpg"不存在,被过滤掉了,所以第一个batch的维度变为torch.Size([3, 3, 224, 224])
[Errno 2] No such file or directory: '../dataset/test_images/images\\ddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images\\111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')
[Errno 2] No such file or directory: '../dataset/test_images/images\\ddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images\\111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。