铁雪资源网 Design By www.gsvan.com

数据分组

  • 使用 groupby() 方法进行分组
  • group.size()查看分组后每组的数量
  • group.groups 查看分组情况
  • group.get_group('名字') 根据分组后的名字选择分组数据

准备数据

# 一个Series其实就是一条数据,Series方法的第一个参数是data,第二个参数是index(索引),如果没有传值会使用默认值(0-N)
# index参数是我们自定义的索引值,注意:参数值的个数一定要相同。
# 在创建Series时数据并不一定要是列表,也可以将一个字典传进去。
from pandas import Series, DataFrame

# 使用字典创建
index_list = ['001', '002', '003', '004', '005', '006', '007', '008', '009', '010']
name_list = ['李白', '王昭君', '诸葛亮', '狄仁杰', '孙尚香', '妲己', '周瑜', '张飞', '王昭君', '大乔']
age_list = [25, 28, 27, 25, 30, 29, 25, 32, 28, 26]
gender_list = ['F', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M']
salary_list = ['10k', '12.5k', '20k', '14k', '12k', '17k', '18k', '21k', '22k', '21.5k']
marital_list = ['NO', 'NO', 'YES', 'YES', 'NO', 'NO', 'NO', 'YES', 'NO', 'YES']
dic = {
 '姓名': Series(data=name_list, index=index_list),
 '年龄': Series(data=age_list, index=index_list),
 '薪资': Series(data=salary_list, index=index_list),
 '性别': Series(data=gender_list, index=index_list),
 '婚姻状况': Series(data=marital_list, index=index_list)
}
df = DataFrame(dic)

# 写入csv,path_or_buf为写入文本文件
df.to_csv(path_or_buf='./People.csv', encoding='utf_8_sig')
print('end')

上面代码会在当前目录下生成一个 People.csv 文件

import pandas as pd
df = pd.read_csv('./People.csv')
df.head()

pandas数据分组groupby()和统计函数agg()的使用

# 根据 '性别列' 进行分组, 得到的是一个分组后的对象
groups = df.groupby('性别')
print(groups)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002953DAEBC88>

size()

使用groupby的size方法可以查看分组后每组的数量, 并返回一个含有分组大小的Series

print(groups.size())
性别
F 5
M 5
dtype: int64

可以只对一列数据进行分组, 只保留想要的数据

例如: 通过性别, 只对年龄进行分组

group = df['年龄'].groupby(df['性别'])
# 查看分组
print(group.groups)
# 根据分组后的名字选择分组
print(group.get_group('F'))
{'F': Int64Index([0, 2, 3, 6, 7], dtype='int64'), 'M': Int64Index([1, 4, 5, 8, 9], dtype='int64')}
0 25
2 27
3 25
6 25
7 32
Name: 年龄, dtype: int64
  • 代码df['年龄'].groupby(df['性别'])的逻辑是:取出df中'年龄'列数据,并且对该列数据根据df[‘性别']列数据进行分组操作
  • 这个代码也可写成df.groupby(df['性别'])['年龄'], 他的逻辑是: 将df数据通过df[‘性别']进行分组,然后再取出分组后的'年龄'列数据。两种写法达到的效果是一样的
  • group.groups的结果是一个字典,字典的key是分组后每个组的名字,对应的值是分组后的数据,此方法方便我们产看分组的情况
  • group.get_group('F')这个方法可以根据具体分组的名字获取,每个组的数据

 对分组进行遍历

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
# print(groups)
for group_name,group_df in groups:
 print('分组的名称:', group_name, '分组的数据', group_df.shape)
 print('-'*10)

分组的名称: F 分组的数据 (5, 6)
----------
分组的名称: M 分组的数据 (5, 6)
----------

- 将分组后的对象groups进行遍历,可以获取到group_name每个组的名字,group_df每个组的数据

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
 f_mean = group_df['年龄'].mean()
 f_max = group_df['年龄'].max()
 f_min = group_df['年龄'].min()
 print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_max,f_min,f_mean))

F组的最大年龄是32,最小年龄是25,平均年龄是26.8
M组的最大年龄是30,最小年龄是26,平均年龄是28.2

按多列进行分组

当需要按照多列进行分组的时候, groupby 方法里面我们传入一个列表, 列表分别存储分组依据的列名

注意: 列表中列名的顺序, 确定了先按XXXX列分组, 然后在按照YYYY列分组, 不同的顺序产生的分组名字是不同的

df = pd.read_csv('./People.csv')
group=df.groupby(['性别', '婚姻状况'])
df1 = group.size()
print(df1)

性别 婚姻状况
F  NO   2
  YES   3
M  NO   4
  YES   1
dtype: int64

group.size()返回的结果中发现索引值是多层的, 所以对于多索引值的获取, 只需要从外往里一层一层的取就可以啦, 就像我们睡觉之前,需要先脱外衣再脱掉内衣是一样的

size = df1['F'][ 'NO']
print(size)

2

pandas 常用统计函数

  • count() 统计列表中非空手机开的个数
  • nunique() 统计非重复的数据个数
  • sum() 统计列表中所有数值的和
  • mean() 计算列表中数据的平均值
  • median() 统计列表中数据中位数
  • max() 求列表中数据的最大值
  • min() 求列表中数据的最小值

对分组后的数据进行统计 agg()

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean'])
  print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_se[0],f_se[1],f_se[2]))

F组的最大年龄是32.0,最小年龄是25.0,平均年龄是26.8
M组的最大年龄是30.0,最小年龄是26.0,平均年龄是28.2

  • 在使用 agg() 函数时, 我们可以将多个统计函数一起放在一个 agg() 函数中
  • 如果是统计函数是pandas 提供的, 只需要将函数名字以字符串的形式存储到列表中即可
  • 例如: 将 max() 改成 ‘max'

自定义统计函数

当使用自定义的统计函数时
先创建统计函数

# 自定义的统计函数
def my_peak_range(df):
  """
  返回最大值与最小之间的范围
  """
  return df.max() - df.min()

# 使用
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean',my_peak_range])
  print(f_se[0],f_se[1],f_se[3])
32.0 25.0 7.0
30.0 26.0 4.0

注意: 自定义函数名字传入agg() 函数时, 不需要转换成字符串

补充: 在这个数据中, 性别是什么的人总年龄最高

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
gende=groups.sum().sort_values(by='年龄',ascending=False).index.to_list()[0]
"""
这行代码, 先按性别进行分组, 然后吧每组中的数据求和得到总的年龄, 在按照年龄排序
再取出index,最后使用to_list()转换为列表,取出第一个数据
"""

print(gende)

M

开始按照性别分组, 组量太少, 数据也比较少, 本来准备算薪资总数, 但是单位忘记换了, 就这样吧

标签:
pandas,groupby(),agg(),pandas,groupby(),pandas,agg()

铁雪资源网 Design By www.gsvan.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
铁雪资源网 Design By www.gsvan.com

评论“pandas数据分组groupby()和统计函数agg()的使用”

暂无pandas数据分组groupby()和统计函数agg()的使用的评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。